Cho a,b là các số hữu tỉ thỏa mãn \(a^3+b^3\)=4ab. Cmr 4-ab là bình phương của một số hữu tỉ
Cho a,b,c là các số hữu ti khác 0 thỏa mãn a+b+c=0.Chứng minh rằng: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\) là bình phương của một số hữu tỉ
Cho a, b, c đôi một khác nhau thỏa mãn: ab + bc + ca = 1.Tính giá trị của biểu thức:
A= \(\dfrac{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)
Cho các số hữu tỉ a, b, c và d thỏa mãn điều kiện:
\(\left\{{}\begin{matrix}a^2+b^4+c^6+d^8=1\\a^{2016}+b^{2017}+c^{2018}+d^{2019}=1\end{matrix}\right.\)
Tính giá trị của biểu thức \(M=a^3-a+3b^4-3b+5c^5-5c+7d^6-7d\)
Cho 2 số a,b thỏa mãn \(a^2+b^2+ab=7\)
Tính gt của bt biết:\(\dfrac{a^2+b^2+\left(a+b\right)^2}{a^4+b^4+\left(a+b\right)^4}\)
\(A=\left(\dfrac{1}{x^2-1}+\dfrac{1}{x+1}\right):\left(\dfrac{1}{x-1}-\dfrac{1}{x}\right)\) với \(x\ne0;x\ne\pm1\)
a)Rút gọn A
b) Tính giá trị của b thức A với x thỏa mãn |x-1|=3
Cho a,b,c đôi một khác nhau thỏa mãn:ab+bc+ca=2011.Tính giá trị của biểu thức
K=\(\dfrac{\left(a^2+2bc-2011\right)\left(b^2+2ca-2011\right)\left(c^2+2ab-2011\right)}{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}\)
Cho 3 số a, b,c đôi một khác nhau. Chứng minh rằng giá trị của biểu thức sau không phụ thuộc a, b, c
\(P=\dfrac{a^2}{\left(a-b\right)\left(a-c\right)}+\dfrac{b^2}{\left(b-a\right)\left(b-c\right)}+\dfrac{c^2}{\left(c-a\right)\left(c-b\right)}\)
Cho x,y là các số hữu tỉ khác 1 thỏa mãn :
\(\frac{1-2x}{1-x}+\frac{1-2y}{1-y}=1\)
Chứng minh rằng M= x2+y2-xy là bình phương của một số hữu tỉ