Áp dụng BĐT cô si ta có :
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}=3\)
\(\Rightarrow BĐT\)cần \(CM\): \(3>\frac{9}{a+b+c}\Leftrightarrow a+b+c>3\)
Mà a,b,c > 0 => abc > 0
\(\Rightarrow a+b+c\ge3\sqrt[3]{abc}\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b=c\\a^2=b^2=c^2=1\end{cases}\Leftrightarrow}a=b=c=1\)
\(abc\ge1\)khi nào vậy bạn
Áp dụng BĐT Cauchy-Schawz ta có: \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca}\)
Ta sẽ chứng minh \(\frac{\left(a+b+c\right)^2}{ab+bc+ca}\ge\frac{9}{a+b+c}\Leftrightarrow\frac{3}{ab+bc+ca}+2\ge\frac{9}{a+b+c}\)
Đặt a+b+c=t ta cần chứng minh
\(\frac{6}{t^2-3}+2\ge\frac{9}{t}\Leftrightarrow\left(t+3\right)\left(t-3\right)^2\ge0\)
BĐT cuối luôn đúng do đó bài toán được chứng minh xong
Dấu "=" xảy ra <=> a=b=c
Quỳnh j đó : ủa cái cuối phải là \(\left(2t+3\right)\left(t-3\right)^2\ge0\)chứ nhỉ