so sánh tổng sau với 1 và 2
\(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\)(a,b,c,d \(\in\)N*)
So sánh tổng sau với 1 và 2:
\(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\)(a,b,c,d \(\in\)N*)
So sánh tổng sau với 1 và 2: \(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\)(a,b,c,d \(\in\)N*)
So sánh tổng sau với 1 và 2
\(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\)(a,b,c,d \(\in\)N*)
1.Tìm các phân số có tử số 11 nằm giữa \(-\frac{13}{2}\)và \(-\frac{13}{3}\)
2.Cho \(\frac{c}{d}\)<\(\frac{a}{b}\)< 1.a;b;c;d là những số nguyên dương. Hãy so sánh \(\frac{a}{b}\);\(\frac{c}{d}\)với \(\frac{a+d}{b+c}\)
3.Hãy tìm tất cả các cặp số hữu tỉ đối nhau có mẫu là 7 , nằm giữa \(-\frac{1}{3}\)và\(\frac{1}{2}\)
4.Cho \(\frac{a}{b}\)<\(\frac{c}{d}\).a;b;c;d là nhũng số nguyên dương. Hãy so sánh \(\frac{a}{b}\);\(\frac{c}{d}\)với \(\frac{a-c}{b-d}\)
a) \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)= ?
b) Tìm các STN a, b, c, d (khác nhau) sao cho :
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)
Cho a + b + c + d khác 0 và \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)
Tính giá trị biểu thức \(A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
1) So sánh
\(\frac{n+1}{n+2}và\frac{n}{n+3}\)
2)a) Cho \(\frac{a}{b}>\frac{c}{d}\)(b,d khác 0). Chứng minh rằng a x d > b x c
b) Cho a x d > b x c(b,d khác 0).Chứng minh rằng \(\frac{a}{b}>\frac{c}{d}\)
Giúp mình với, mình đang cần gấp
Cho các số hữu tỉ: \(x=\frac{a}{b}\); \(y=\frac{c}{d}\)(b>0, d>0) và \(z=\frac{a+c}{b+d}\). So sánh x và z, y và z.