§1. Bất đẳng thức

Eren

Cho a, b, c > 0. CMR \(\dfrac{1}{a\left(a+1\right)}+\dfrac{1}{b\left(b+1\right)}+\dfrac{1}{c\left(c+1\right)}\ge\dfrac{3}{\sqrt[3]{abc}\left(1+\sqrt[3]{abc}\right)}\)

Akai Haruma
29 tháng 9 2017 lúc 0:50

Lời giải:

Áp dụng hệ quả của BĐT AM-GM:

\(\text{VT}^2=\left[\frac{1}{a(a+1)}+\frac{1}{b(b+1)}+\frac{1}{c(c+1)}\right]^2\geq 3\left(\frac{1}{ab(a+1)(b+1)}+\frac{1}{bc(b+1)(c+1)}+\frac{1}{ca(a+1)(c+1)}\right)\)

\(\Leftrightarrow \text{VT}^2\geq 3.\frac{a^2+b^2+c^2+a+b+c}{abc(a+1)(b+1)(c+1)}\geq 3.\frac{a+b+c+ab+bc+ac}{abc(a+1)(b+1)(c+1)}\)

\(\Leftrightarrow \text{VT}^2\geq \frac{3}{abc}-\frac{3(abc+1)}{abc(a+1)(b+1)(c+1)}\) \((1)\)

Ta sẽ cm \((a+1)(b+1)(c+1)\geq (1+\sqrt[3]{abc})^3\). Thật vậy:

Áp dụng BĐT AM-GM:

\(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\geq 3\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}\)

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 3\sqrt[3]{\frac{1}{(a+1)(b+1)(c+1)}}\)

Cộng theo vế: \(\Rightarrow 3\geq \frac{3(\sqrt[3]{abc}+1)}{\sqrt[3]{(a+1)(b+1)(c+1)}}\)

\(\Rightarrow (a+1)(b+1)(c+1)\geq (\sqrt[3]{abc}+1)^3\) (2)

Từ \((1),(2)\Rightarrow \text{VT}^2\geq \frac{3}{abc}-\frac{3(abc+1)}{abc(1+\sqrt[3]{abc})^3}=\frac{9}{\sqrt[3]{a^2b^2c^2}(1+\sqrt[3]{abc})^2}=\text{VP}^2\)

\(\Leftrightarrow \text{VT}\geq \text{VP}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c=1\)

Bình luận (0)
Nguyễn Huy Thắng
28 tháng 9 2017 lúc 1:45

ap dung bdt holder

Bình luận (1)

Các câu hỏi tương tự
Thư Trần
Xem chi tiết
Phạm Lợi
Xem chi tiết
Đức Huy ABC
Xem chi tiết
My My
Xem chi tiết
Tuấn Phạm Minh
Xem chi tiết
Neet
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết
Phan Thanh Tâm
Xem chi tiết
Phạm Kim Oanh
Xem chi tiết