ta có: a3+b3+c3-3abc
<=>a^3+3a^2b+3ab2+b3+c3-3a^2b-3ab^2-3abc
<=>(a+b)^3+c^3-3ab(a+b+c)
<=>(a+b+c)[(a+b)^2-c(a+b)+c^2.... tự làm bước tiếp
Ta sẽ chứng minh \(a^3+b^3+c^3-3abc=0\)
Ta có ; \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Vậy \(a^3+b^3+c^3=3abc\)
a3+b3+c3−3abc=(a+b)3+c3−3ab(a+b)−3abc=(a+b+c)(a2+b2+c2+2ab−ac−bc)−3ab(a+b+c)=(a+b+c)(a2+b2+c2−ab−bc−ac)=0Vậya3+b3+c3=3abc