Cho a , b biết ab = 6 . Chứng minh rằng : \(\dfrac{a^2+b^2}{\left|a-b\right|}\ge4\sqrt{3}\)
Cho hình chữ nhật ABCD ( AD<AB) có DH vuông góc với AC tại H.
a)Biết rằng AD = 6 cm; AH = 3,6 cm. Tính AC và AB?
b)Kéo dài DH cắt AB và BC lần lượt tại E và F.
Chứng minh rằng: AB2 - AD2 =DH.EF
c)Chứng minh rằng: EF/AC=tanDAH - tanBAH
Cho a, b, c là các số thực dương thỏa mãn: a+b+c+ab+bc+ac=6. Chứng minh rằng: \(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge3\)
Cho a,b,c>0. Chứng minh rằng:
\(\frac{a^6}{b^3\left(c+a\right)}+\frac{b^6}{c^3\left(a+b\right)}+\frac{c^6}{a^3\left(b+c\right)}\ge\frac{ab+bc+ca}{2}\)
Cho tam giác ABC vuông tại A, đường cao AH. Cho biết BH=a ; HC=b.
Chứng minh rằng căn ab bé hơn hoặc bằng (a+b)/2
Cho đường tròn (0,r) và điểm M nằm ngoài đường tròn . Vẽ 2 tiếp tuyến MA , MB của đường tròn ( AB là tiếp điểm )a, Chứng minh rằng 4 điểm O,A,M,B nằm trên 1 đường trònb, Biết OA = 6 cm , AM = 8cm . Tính số đo góc AMO và độ dài đoạn thẳng ABc, Gọi giao điểm của OM và (O;r) là K . Từ K kẻ KP⊥AM (P∈AM ) ; kẻ KQ ⊥BM ( Q∈BM ) . Chứng minh rằng PQ // AB
Chứng minh rằng a+b+c chia hết cho 6 thì a^3+b^3+c^3 chia hết cho 6
Biết a,b là các số nguyên dương thỏa mãn a2-ab+b2 chia hết cho 9. Chứng minh rằng cả a và b đều chia hết cho 3.
Cho \(2^n=10a+b\). Chứng minh rằng nếu n>3 thì tích ab chia hết cho 6 với a, b, n là số nguyên dương và b<10
Cho a ≥ 1, b ≥ 1. Chứng minh rằng : a√b - 1 + b√a - 1 ≤ ab