Câu 1:
\(A=4+4^2+4^3+.....+4^{2008}\)
\(\Rightarrow4A=4^2+4^3+4^4+...+4^{2009}\)
\(\Rightarrow4A-A=\left(4^2+4^3+4^4+....+4^{2009}\right)-\left(4+4^2+4^3+....+4^{2008}\right)\)
\(\Rightarrow3A=4^{2009}-4\)
\(\Rightarrow A=\frac{4^{2009}-4}{3}\)
Câu 2:
Đặt \(B=A+1=1+4+4^2+4^3+4^4+....+4^{2008}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2006}+4^{2007}+4^{2008}\right)\)
\(=21+4^3\left(1+4+4^2\right)+...+4^{2006}\left(1+4+4^2\right)\)
\(=21+4^3\cdot21+...+4^{2006}\cdot21\)
\(=21\left(1+4^3+...+4^{2006}\right)\)
\(\Rightarrow B⋮21\)
\(\Rightarrow A=B-1\)Không chia hết cho 21