A=1/2^2(1/2^2+1/3^2+...+1/n^2)<1/4[(1/(1.2)+1/(2.3)+...+1/(n-1).n]=1/4(1-1/n) {n lon hon hoac bang 2}. Suy ra 1-1/n<0. Suy ra A<1/4
A=1/2^2(1/2^2+1/3^2+...+1/n^2)<1/4[(1/(1.2)+1/(2.3)+...+1/(n-1).n]=1/4(1-1/n) {n lon hon hoac bang 2}. Suy ra 1-1/n<0. Suy ra A<1/4
Chứng minh rằng P = 2!/3!+ 2!/4! + 2!/5! + ...+ 2!/n! < 1( n thuộc N và n lớn hơn hoặc bằng 3)
cho n lớn hơn hoặc bằng 2. So sánh: B=1/2^2+1/4^2+1/6^2+...+1/(2n)^2 vs 1/2
chứng minh rằng với mọi n thuộc N, n lớn hơn hoặc bằng 2, ta có 3/9.14 + 3/14.19 + 3/19.24 +.......+ 3/(5n-1)(5n+4) < 1/15
Tính
a) (1-1/2).(1-1/3).(1-1/4)....(1-1/n)
(n lớn hơn hoặc bằng 2; n thuộc Z)
Bài 3 : CMR :1/4^2 + 1/6^2 + 1/8^2 + ... + 1/(2n)^2 < 1/4 ( n lớn hơn hoặc = 2)
a, Chứng minh rằng (a-1) x (a-2) x (a-3) x (a-4) + 1 lớn hơn hoặc bằng 0 với mọi a thuộc R
b, Cho x + 2 x y = 5 . Chứng minh rằng x2 + y2 lớn hơn hoặc bằng 5
CMR : M = 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/n^2 < 1 ( n thuộc N ; n lớn hơn hoặc bằng 2)
cho n lớn hơn hoặc bằng 2. So sánh: A=1/2^2+1/3^2+1/4^2+...+1/n^2 với 1
Cho n là số tự nhiên lớn hơn 1.Chứng minh ta có:
2017.(1+2+3+4+5+....+n)2>335.n(n+1)(2n+1)