Ta có:
\(a = 120 a + 36 b (\text{v}ớ\text{i}\&\text{nbsp}; a , b \in \mathbb{N} \&\text{nbsp};–\&\text{nbsp};\text{t}ậ\text{p}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp};\text{t}ự\&\text{nbsp};\text{nhi} \hat{\text{e}} \text{n})\)
Tuy nhiên, biểu thức này gây nhầm lẫn do ký hiệu trùng lặp: "a" xuất hiện ở cả hai vế. Có vẻ bạn đang dùng "a" ở vế trái là một số, còn "a" ở vế phải là biến (chưa rõ).
✅ Giả sử đúng dạng đề bài là:Cho \(A = 120 a + 36 b\) với \(a , b \in \mathbb{N}\). Chứng minh rằng A chia hết cho 12.
🔎 Giải:Biểu thức:
\(A = 120 a + 36 b\)
Ta cần chứng minh:
\(A \div 12 (\text{hay}\&\text{nbsp}; A \equiv 0 \left(\right. m o d 12 \left.\right) \left.\right)\)
Ta phân tích:
\(120 a = 12 \times 10 a\) ⇒ chia hết cho 12\(36 b = 12 \times 3 b\) ⇒ chia hết cho 12⇒ Tổng \(A = 120 a + 36 b\) cũng chia hết cho 12
✅ Kết luận:\(\boxed{A \&\text{nbsp};\text{chia}\&\text{nbsp};\text{h} \overset{ˊ}{\hat{\text{e}}} \text{t}\&\text{nbsp};\text{cho}\&\text{nbsp}; 12}\)
Hay: A : 12 (A chia hết cho 12) — được chứng minh.
Tk
\(120a=12\cdot10a\) ⋮12
\(36b=12\cdot3b\) ⋮12
Do đó: 120a+36b⋮12
=>a⋮12