\(\frac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow a+b\ge2\sqrt{ab}\)
<=>\(a+b-2\sqrt{ab}\ge0\)
<=>\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)
=>dpcm
\(\frac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow a+b\ge2\sqrt{ab}\)
<=>\(a+b-2\sqrt{ab}\ge0\)
<=>\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)
=>dpcm
a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy: \(\frac{a+b}{2}\ge\sqrt{ab}\)
Cho a lớn hơn hoặc bằng 0, b lớn hơn hoặc bằng 0 . Chứng minh bất đẳng thức Cauchy : \(\frac{a+b}{2}\)lớn hơn hoặc bằng \(\sqrt{ab}\)
Cho a \(\ge\)0 , b\(\ge\)0 . Chứng minh bất đẳng thức Cauchy : \(\frac{a+b}{2}\ge\sqrt{ab}.\)
câu 1
a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:\(\frac{a+b}{2}\ge\sqrt{ab}\)
b) Cho a, b, c > 0. Chứng minh rằng:\(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:
b) Cho a, b, c > 0. Chứng minh rằng:
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab
a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:
b) Cho a, b, c > 0. Chứng minh rằng:
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:
b) Cho a, b, c > 0. Chứng minh rằng:
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:
b) Cho a, b, c > 0. Chứng minh rằng:
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.