Áp dụng BĐT Bunhia-copxki:
Ta có: (4x+y)2=(2x.2+y.1)2\(\le\)(4x2+y2)(22+12)
<=> 1\(\le\)(4x2+y2).5
=> 4x2+y2 \(\ge\frac{1}{5}\)(đpcm)
\(\text{Ta có : }\)
\(4x+1=1< 4x^2+y^2\)
\(\text{Mà }1>\frac{1}{5}=0,2\)
\(\Rightarrow\text{ }4x^2+y^2>\frac{1}{5}\)