Bài 2. Cho tam giác ABC có AB = AC. Gọi M, N lần lượt là trung điểm của AB, AC. Các đường trung trực AB, AC cắt nhau tại O.
a) Chứng minh rằng AO là tia phân giác của góc A.
b) Qua B kẻ đường thẳng vuông góc với AB, qua C kẻ đường thẳng vuông góc với AC, chúng cắt nhau tại K. Chứng minh rằng AK là tia phân giác của góc A.
c) Vẽ BD vuông góc với AC tại D, CE ⊥ AB tại E, BD và CE cắt nhau tại H. Chứng minh rằng bốn điểm A, O, H, K thẳng hàng.
Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E a) Chứng minh tam giác ADE cân b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh BD = BF. c) Chứng minh BD = CE
Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E.
a) Chứng minh tam giác ADE cân.
b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh BD = BF.
c) Chứng minh BD = CE.
cho tam giác ABC vuông tại A. Gọi điểm M, N lần lượt là trung điểm của AB và AC. Qua M vẽ đường thẳng a vuông góc với AB tại M. Qua N vẽ đường thẳng b vuông góc với AC tại N. Đường thẳng a cắt đường thẳng b tại D. Trên a lấy E sao cho M là trung điểm của DE. Trên đường thẳng b lấy F sao cho N là trung điểm của DF. Chứng minh rằng:
a) AE = AF.
b) 3 điểm E,A,F thẳng hàng.
c) A là trung điểm của EF.
Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng AB, AC lần lượt tại D và E. a) Chứng minh tam giác ADE cân. b) Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh BD = BF. c) Chứng minh BD = CE.
cho tam giác ABC vuông cân tại A, M là 1 điểm thuộc cạnh AC. Gọi I,K lần lượt là trung điểm của canh BM,AC. Qua A kẻ đường thẳng vuông góc với IK, qua C kẻ đường thẳng vuông góc với AC, chúng cắt nhau tại H. Tính góc HMC
Cho tam giác ABC (AB < AC). Gọi Ax là tia phân giác của góc A. Qua trung điểm D của cạnh BC kẻ đường thẳng vuông góc với tia Ax, cắt tỉa AB tại M và cắt AC tại N. a) Chứng minh AAMN cân. b) Qua B kẻ đường thẳng song song với AC cắt MN tại E. Chứng minh BE = CN. c) Giả sử AB = 5cm, AC = 7cm. Tính AM và BM.
Cho tam giác ABC có AB < AC. Gọi Ax là tia phân giác góc A. Qua trung điểm M của BC kẻ đường thẳng vuông góc với Ax, cắt các đường thẳng Ab, AC lần lượt tại D và E.
a, Chứng minh tam giác ADE cân
b, Qua B kẻ đường thẳng song song với AC, cắt DE tại F. Chứng minh BD = BF
c, Chứng minh BD = CE
cho tam giác ABC vuông cân tại A, M là 1 điểm thuộc cạnh AC. Gọi I,K lần lượt là trung điểm của canh BM,AC. Qua A kẻ đường thẳng vuông góc với IK, qua C kẻ đường thẳng vuông góc với AC, chúng cắt nhau tại H. Tính góc HMC
Cô quản lý giúp với, huhu