Cho HCN ABCD tâm O. Gọi M,N lần lượt là trung điểm của OA và CD. Bt \(\overrightarrow{MN}=a.\overrightarrow{AB}+b\overrightarrow{AD}\) . Tính a+b
Cho bốn điểm A,B,C,D.Gọi I,J lần lượt là trung điểm của AB và CD
a) chứng minh \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
b)GỌi P,Q là trung điểm của các đoạn thẳng AC và BD; M,N là trung điểm của các đoạn thẳng AD và BC.Chứng minh rằng 3 đoạn thẳng IJ,PQ và MN có chung trung điểm
Bài 1: Cho lục giác đều ABCDEF tâm O.Hãy tìm các véc tơ khác véc tơ-không có điểm đầu,điểm cuối là đỉnh của lục giác và tâm O sao cho:
a) Bằng với AB(hướng từ A đến B) b)Ngược hướng với OC(hướng từ O đến C)
Bài 2:Cho hình vuông ABCD cạnh a,tâm O và M là trung điểm AB.
Tính độ dài của các véc tơ AB,AC,OA,OM.
Bài 3: Cho tam giác ABC có trọng tâm G.Gọi I là trung điểm của BC.Dựng điểm B' sao cho véc tơ B'B = véc tơ AG.
a) Chứng minh rằng véc tơ BI = véc tơ IC. b)Gọi J là trung điểm của BB'.CMR: véc tơ BJ = véc tơ IG.
Bài 4: Cho hình bình hành ABCD. Trên các đoạn thẳng DC,AB theo thứ tự lấy các điểm M,N sao cho DM = BN.Gọi P là giao điểm của AM,DB và Q là giao điểm của CN,DB. Chứng minh rằng véc tơ AM = véc tơ NC và véc tơ DB = véc tơ QB.
Bài 5: Cho tứ giâc ABCD. Gọi M,N,P,Q lần lượt là trung điểm AB,BC,CD,DA.Chứng minh rằng véc tơ MQ =véc tơ NP.
Bài 6: Cho hình bình hành ABCD. Gọi M,N lần lượt là trung điểm của DC,AB; P là giao điểm của AM,DB và Q là giao điểm của CN,DB.Chứng minh rằng véc tơ DM = véc tơ NB và véc tơ DP = véc tơ PQ = véc tơ QB.
Bài 7: Cho hình thang ABCD có hai đáy là AB và CD với AB = 2CD.Từ C vẽ véc tơ CI = véc tơ DA. Chứng minh rằng:
a) véc tơ AD = véc tơ IC và véc tơ DI = véc tơ CB b) vectơ AI = vectơ IB = vectơ DC
Bài 8:Cho tam giác ABC có trực tâm H và O tâm là đường tròn ngoại tiếp.Gọi B' là điểm đối xứng qua O. Chứng minh vectơ AH = vectơ B'C.
Bài 9: Cho hình vuông ABCD tâm O cạnh a.Gọi M là trung điểm AB,N là điểm đối xứng với C qua D.Hãy tính độ dài của vectơ sau vectơ MD,vectơ MN.
cho tứ giác ABCD gọi M,N là hai điểm di động trên AB,CD sao cho \(\frac{MA}{MB}=\frac{ND}{NC}\)và I, J lần lượt là trung điểm của AD,BC
a, tính vectoIJ theo vectoAB,DC
b, chứng minh trung điểm P của MN nằm trên đường thẳng IJ
Bài 1 : cho tứ giác ABCD. Gọi M,N,P,Q là trung điểm của AB, BC, CD và DA, Chứng minh véc tơ MP = MN + MQ
Bài 2: Trong mp Oxy cho tam giác OAB đều cạnh = 1 . AB sog song với Ox, A là điểm có tọa độ dương. Tìm tọa độ đỉnh B
BÀi 3: Cho tam giác ABC. Các điểm M,N,P là trung điểm của cạnh AB, BC, CA. chứng minh véc tơ AN+BP+CM = 0
Cho 4 điểm A,B,C,D. Gọi E,F,G lần lượt là trung điểm của AB,CD,EF. Chứng minh
a,\(\overrightarrow{AC}+\overrightarrow{BD}=2\overrightarrow{EF}\)
b,\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=\overrightarrow{0}\)
c,\(\overrightarrow{AB}+\overrightarrow{AC+}\overrightarrow{AD}=4\overrightarrow{AG}\)
MÌNH CẦN GẤP GIÚP MÌNH NHA
Cho tam giác ABC và điểm M tùy ý .gọi A ', B' , C' lần lượt là điểm đối xứng của M qua các điểm qua các trung điểm K,I,J của các cạnh BC ,CA ,AB
a Chứng minh ba đường thẳng AA' , BB' , CC' đồng quy tại N
b ) Chứng minh khi M di động ,MN luôn qua trọng tâm G tam giác ABC
a/chứng minh rằng với 4 điểm bất kì A,B,C,D ta có: vecto AB+ vectoCD= vectoAD+ vectoCB
b/cho hình bình hành MNPQ có tâm O. Chứng minh đẳng thức: vectoMN +2vectoPO+ vectoMQ= veto0