Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
no name

cho 3x-y=3z và 2+y=7z. Tính giá trị của biểu thức \(M=\frac{x^2-2xy}{x^2+y^2}\)(x khác 0,y khác 0)

alibaba nguyễn
23 tháng 11 2016 lúc 23:43

Mình sửa lại đề cho đúng nhé

\(\hept{\begin{cases}3x-y=3z\\2x+y=7z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2z\\y=3z\end{cases}}\)

Thế vô M ta được

alibaba nguyễn
23 tháng 11 2016 lúc 23:46

\(M=\frac{x^2-2xy}{x^2+y^2}=\frac{4z^2-2.2z.3z}{4z^2+9z^2}=-\frac{8}{13}\)

Nguyễn Tiến Đạt
12 tháng 12 2017 lúc 21:17

\(_{\hept{\begin{cases}3x-y=3z\left(1\right)\\\\2x+y=7z\end{cases}\Rightarrow}\left(3x-y\right)+\left(2x+y\right)=10z}\)

\(\Leftrightarrow\)5x=10z\(\Leftrightarrow x=2z\)

thay x=2z vào (1) ta được :6z+y=3z\(\Rightarrow y=6z-3z=3z\)

thay y=3z,x=2z vào biểu thức M=\(\frac{4z^2-12z^2}{4z^2+9z^2}=\frac{-8}{13}\)


Các câu hỏi tương tự
Diệu Anh
Xem chi tiết
Duong Thuc Hien
Xem chi tiết
thu
Xem chi tiết
Huyền Nguyễn Khánh
Xem chi tiết
Tran Tuan Anh
Xem chi tiết
Nguyễn Úy Vũ
Xem chi tiết
Trịnh Hoàng Đông Giang
Xem chi tiết
Trương Thị Thu Thảo
Xem chi tiết
Nao Tomori
Xem chi tiết