Cho ba số thực x,y,z thỏa mãn \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)Tính giá trị của biểu thức S= \(\left(x-4\right)^{2013}+\left(y-4\right)^{2013}+\left(z-4\right)^{2013}\)
Cho 3 số thực x ,y ,z thõa mãn:
\(4x^2-2y^2-2x^2-4xy-4xz+2yz-6y-10z+34=0\)
Gía trị biểu thức S\(=\left(x-4\right)^{2013}+\left(y-4\right)^{2013}+\left(z-4\right)^{2013}\) là ?
cho x,y,z thỏa mãn : 4x^2 +2y^2 +2z^2 -4xy-4xz+2yz -6x -10z +34=0
tính: \(\left(x-4\right)^{2015}+\left(y-4\right)^{2015}+\left(z-4\right)^{2015}\)
4x^2 + 2y^2 + 2z^2 - 4xy - 4xz +2yz -6y -10z + 34 = 0
tính M= (x - 4)^22 + (y-4)^6 + (z-4)^2013
Cho x,y,z thỏa 4x2+2y2+2z2-4xy+2yz-4xz-6y-10z+34=0
Tính giá trị biểu thức S=(x-4)2020+(y-3)2020+(z-5)2020
cho 3 số x,y,z thỏa mãn đồng thời
\(3x-2y-2\sqrt{y+2012}+1=0\)
\(3y-2z-2\sqrt{z-2013}+1=0\)
\(3z-2x-2\sqrt{x-2}-2=0\)
tính giá trị của biểu thức P=\(\left(x-4\right)^{2011}+\left(y+2012\right)^{2012}+\left(z-2013\right)^{2013}\)
cho các số thực x,y,z thỏa mãn\(\hept{\begin{cases}x+y+z=6\\\left(x-1\right)^3+\left(y-2\right)^3+\left(z-3\right)^3=0\end{cases}}\)
Tính giá trị biểu thức của F=(x-1)2013+(y-2)2013+(z-3)2013
Cho các số dương x,y,z thỏa mãn: \(\left(\sqrt{x}-\sqrt{y}\right)^3+\left(\sqrt{y}-\sqrt{z}\right)^3+\left(\sqrt{z}-\sqrt{x}\right)^3=0\)
tính giá trị biểu thức: T=\(\left(\sqrt{x}-\sqrt{y}\right)^{2013}+\left(\sqrt{y}-\sqrt{z}\right)^{2013}+\left(\sqrt{z}-\sqrt{y}\right)^{2013}\)
Cho x,y,z thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\), tính giá trị biểu thức: \(M=\frac{19}{4}+\left(x^{2013}+y^{2013}\right)\left(y^{2015}+z^{2015}\right)\left(z^{2017}+x^{2017}\right)\)