Cho a;b;c là các số thực dương thỏa mãn đẳng thức
\(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)+3\)
Tìm GTLN của biểu thức:
\(A=\frac{1}{\sqrt{a^3+b^3+1}}+\frac{1}{\sqrt{b^3c^3+2}}+\frac{4\sqrt{3}}{c^6+2a^3+9}\)
Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!
Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).
Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:
\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).
Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:
\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).
Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng:
a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).
b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).
c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).
Bài 5: Cho a,b,c >0. Chứng minh rằng:
\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).
Bài 1: Cho a,b,c là các số thực dương. Chứng minh rằng:
\(\sqrt{\frac{a+b+4c}{a+b}}+\sqrt{\frac{b+c+4a}{b+c}}+\sqrt{\frac{c+a+4b}{c+a}}\ge3\sqrt{3}.\)
Bài 2:Cho các số thực dương a,b,c thoả mãn abc=1. Chứng minh rằng:
\(\sqrt[3]{\left(\frac{2a}{ab+1}\right)^2}+\sqrt[3]{\left(\frac{2b}{bc+1}\right)^2}+\sqrt[3]{\left(\frac{2c}{ca+1}\right)^2}\ge3.\)
Giúp mình với! Mình cần gấp.
cho các số thực dương a,b,c thỏa mãn ab+bc+ca=1\(CMR:\frac{a}{1+a^2}+\frac{b}{1+b^2}+\frac{c}{1+c^2}=\frac{2}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\)
1. Chứng minh rằng \(5^{8^{2006}}\) \(+\)\(5\) chia hết cho 6
2. Tìm nghiệm nguyên dương của phương trình \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
3.Cho biểu thức:
P= \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab-1}}-1\right):\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}-\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}+1\right)\)
a) Rút gọn P
b) Cho a+b =1. Tìm giá trị nhỏ nhất của P
4. Cho a,b,c là các số thực dương thỏa mãn điều kiện abc = 1.Tìm giá trị nhỏ nhất của biểu thức
P= \(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)
5. Tìm các số nguyên x,y thỏa mãn hằng đẳng thức:
\(2xy^2+x+y+1=x^2+2y^2+xy\)
6. Đa thức \(F\left(x\right)\)chia cho \(x+1\)dư 4, chia cho \(x^2+1\)dư \(2x+3\). Tìm đa thức dư khi \(F\left(x\right)\) chia cho \(\left(x+1\right)\left(x^2+1\right)\)
Giúp em ạ. Giải từng câu cũng được ạ. Mai em nộp bài rồi.
cho a,b,c dương và a+b+c=1.CMR: \(\frac{\sqrt{\left(^{a^2+2ab}\right)}}{\sqrt{\left(b^2+2c^2\right)}}+\frac{\sqrt{\left(^{b^2+2bc}\right)}}{\sqrt{\left(c^2+2a^2\right)}}+\frac{\sqrt{\left(^{c^2+2ac}\right)}}{\sqrt{\left(a^2+2b^2\right)}}\ge\frac{1}{a^2+b^2+c^2}\)
Cho các số a,b,c thỏa mãn 0<a,b,c<1 và ab+bc+ca=1 tìm gtnn của \(P=\frac{a^{^2}.\left(1-2b\right)}{b}+\frac{b.^2.\left(1-2c\right)}{c}+\frac{c^2.\left(1-2a\right)}{a}^{ }\)
Hello everyone! Today, i will give you 2 questions about Maths, oK??
You should use English if you can :)
Bài 1: Cho \(a,b,c\) dương thỏa mãn a + b + c = 2020
Tìm Min của: \(P=\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ca+2a^2}\)
Bài 2: Cho \(a,b,c\) dương thỏa mãn abc = 1
Chứng minh: \(\frac{1}{\sqrt{ab+a+2}}+\frac{1}{\sqrt{bc+c+2}}+\frac{1}{\sqrt{ca+a+2}}\le\frac{3}{2}\)
Gợi ý B2: Sử dụng BĐT phụ \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
Good luck !!
Cho a; b; c là các số thực dương thỏa mãn ab + bc + ca = 3.
CMR: \(\frac{1}{1+a^2\left(b+c\right)}+\frac{1}{1+b^2\left(c+a\right)}+\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{abc}\)