\(a+\sqrt{ab}+\sqrt[3]{abc}=a+\sqrt{\frac{a}{2}.2b}+\sqrt[3]{\frac{a}{4}.b.4c}\)
\(\le a+\frac{1}{2}\left(\frac{a}{2}+2b\right)+\frac{1}{3}\left(\frac{a}{4}+b+4c\right)=\frac{4}{3}\left(a+b+c\right)\)
\(\Rightarrow S\ge\frac{1008}{a+b+c}-\frac{2016}{\sqrt{a+b+c}}=1008\left(\frac{1}{\sqrt{a+b+c}}-1\right)^2-1008\ge-1008\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\frac{16}{21};\frac{4}{21};\frac{1}{21}\right)\)