cho 3 số a b c thỏa mãn ab+bc+ca=2018abc và 2018(a+b+c)=1.Tính M=a2017+b2017+c2017
Cho a và b là các số thực thỏa mãn: a2017 + b2017 = 2a2018 . b2018
Chứng minh rằng giá trị của biểu thức P = 2018 – 2018.a.b luôn không âm.
Cho a; b; c là các số thỏa mãn: ab + bc + ca = 1
Tính giá trị biểu thức: T = \(\dfrac{\left(a+b+c-abc\right)^2}{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)
Cho 3 số a,b,c thỏa mãn abc=1 và a^3=36. cm: a^2/3 b^2 c^2 > ab bc ca
a)Cho a2+b2+c2=ab+ac+ca .cmr a=b=c
b)cho ba số a.b,c thỏa mãn a+b-c=0;a2+b2+c=10.tính a4+b4+c4
c)cho a+b+c=0 và ab+bc+ca=0 .Tính giá trị biểu thức P=(a-1)2017+(b-1)2017+(c-1)2017
d) tìm a,b,c thỏa mãn đẳng thức :a2-2a+b2+4b+4c2-4c+6=0
a) Cho ba số a, b, c thỏa mãn (a + b + c) (ab + bc + ca) = 2017 và abc = 2017
Tính giá trị của biểu thức P = (b2c + 2017) (c2a + 2017) (a2b + 2017)
b) Tìm các số tự nhiên x, n sao cho số P = x4 + 24n+2 là một số nguyên tố.
Cho a,b,c thỏa mãn:\(a^2+b^2+c^2=ab+bc+ca\) và \(a^{2019}+b^{2019}+c^{2019}=3^{2020}\)
Tính \(A=\left(a-2\right)^{2017}+\left(b-3\right)^{2018}+\left(c-4\right)^{2019}\)
Cho các số thực a,b,c thỏa mãn a+b+c=ab+bc+ca=3 Chứng minh rằng a=b=c=1
Cho các số thực không âm a, b, c thỏa mãn ab + bc + ca = 3. Chứng minh rằng (a + b)(b + c)(c + a) > 8