Từ : \(a+b+c=1\) \(\Rightarrow\hept{\begin{cases}\frac{1}{a}=1+\frac{b}{a}+\frac{c}{a}\\\frac{1}{b}=1+\frac{a}{b}+\frac{c}{b}\\\frac{1}{c}=1+\frac{a}{c}+\frac{b}{c}\end{cases}}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)
\(\ge3+2+2+2=9\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Bổ sung a,b,c dương vào đê
Cách 1:
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{4}{a+b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)
Dấu "=" xảy ra tại a=b=c=1/3
Cách 2:
Áp dụng BĐT Cô si ta có:
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\)
Mà \(a+b+c=1\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\)
Cách 3:
Xét:\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\)
\(\ge3+2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}+2\sqrt{\frac{b}{c}\cdot\frac{c}{b}}+2\sqrt{\frac{c}{a}\cdot\frac{a}{c}}\)
\(=3+2+2+2\)
\(=9\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge9\) vì a+b+c=1