D
Giaithich: \(\overrightarrow{CB}+\overrightarrow{AC}=\overrightarrow{AC}+\overrightarrow{CB}=\overrightarrow{AB}\)
D
Giaithich: \(\overrightarrow{CB}+\overrightarrow{AC}=\overrightarrow{AC}+\overrightarrow{CB}=\overrightarrow{AB}\)
cho hình thoi ABCD cạnh bằng a có tâm O, góc BAD =60 ĐỘ. tính độ dài vec tơ sau.
a) VECTO AB + VECTO AD.
b) VECTO AB - VECTO AC.
c)VECTO AB + VECTO AC.
d) VECTO AD + VECTO CB.
e) VECTO OB - VECTO DC
cho tam giác ABC:
a) xác định các điểm D và E sao cho vecto AD= 2 vecto AB, vecto AE = \(\frac{-1}{2}\)vecto AC
b) Dựng các vecto sau : vecto AB + 2 vecto AC, 2 vecto AB - vecto AC
Mọi ng giúp mình câu b với ạ !
Cho tam giác ABC . Dựng các điểm I , J , K thỏa mãn điều kiện sau :
a) Vecto IA - 3 vecto IB = vecto AC
b) vecto JA - vecto JB + 2 vecto JC = 0
c) vecto KA + 2 vecto KB = 2 vecto CB
Mn giúp em với tại em đang cần gấp , tks :))
Cho tam giác ABC. Gọi A’,B’, C’ lần lượt là trung điểm của BC, CA, AB. a) Chứng minh vecto AA’+ vecto BB’+ vecto CC’ = vecto 0 b) Đặt vecto BB’ = vecto u, CC’ = v. Tính vecto BC, CA, AB theo vecto u và v
Cho tam giác ABC, gọi M,N,P lần lượt là trung điểm của BC, AC, AB. D là trung điểm của AM. Chứng minh rằng:
a, vecto AB+ vecto AC+ vecto MN+ vecto MP = vecto 0
b, vecto NB+ vecto NC - 2.vecto AN= 4.vecto ND
Cho ABCD là hình thang vuông tại A,B (AD là đáy lớn). AD = 2BC và AB = BC = a
a. Tính vecto CD - vecto CB
b. Gọi I trung điểm AD. CM: vecto BI + vecto BC - vecto BA = vecto AD
Cho tam giác ABC . Gọi M , N , P là 3 điểm thoả mãn vecto MC = 1/3 vecto MB , vecto NA + 3 vecto NC = 0 , vecto PA + vecto PB = 0 a ) Biểu diễn vecto MP , vecto NP theo hai vecto AB và AC b ) Chứng minh 3 điểm M , N, P thẳng hàng
Cho tứ giác ABCD, I và J là trung điểm của AB và CD,O là trung điểm I. M là điểm bất kỳ.Chứng minh: a) vecto OA + vecto OB + vecto OC + vecto OD = vecto O b) vecto MA + vecto MB + vecto MC + vecto MD = 4MO c) vecto AC + vecto BD = vecto 2IJ
Trong tọa độ Oxy, Cho tam giác ABC với A(2:-3),B(4:7),C(-3:2) a) tìm tọa độ vecto AB, vecto AC, vecto BC b) tính tích vô hướng của vecto AB.BC và vecto AB.AC c) tính góc tạo bởi các vecto AB và AC, AB vad BC d) tính chu vi của tam giác ABC
Cho tam giác ABC có trọng tâm G Gọi I và J lần lượt là hai điểm thỏa mãn vectơ IB = vectơ BA , vecto JA= -2/3 vecto JC .
a)CM: vecto IJ=2/5 vecto AC - 2 vecto AB
b) tính vecto IG theo vecto AB và vecto AC