Cho x+y+z=0 và xy+yz+zx=0 Tính: A=(x-1)^2016+y^2017+(z+1)^2018
cho x,yz khác 0 thỏa mãn \(\frac{xy}{x+y}\)=\(\frac{yz}{y+z}\)=\(\frac{zx}{z+x}\)
Tính giá trị của P=\(\frac{20xy+4yz+2013zx}{x^2+y^2+z^2}\)
GIÚP EM NHA CÁC ANH CHỊ
Cho các phân thức: A=\(\frac{4xy-z}{xy+2z^2}\);B=\(\frac{4yz-x^2}{yz+2x^2}\);C=\(\frac{4zx-y^2}{zx+2y}\)
C/m với x khác y;y khác z; z khác x và x+y+z=0 thì A.B.C=1, A+B+C=3
Cho các số thực x,y,z đôi 1 khác nhau và x+y+z=0 tính giá trị
P=\(\frac{\left(4yz-x^2\right)\left(4zx-y^2\right)\left(4xy-z^2\right)}{\left(yz+2x^2\right)\left(zx+2y^2\right)\left(xy+2z^2\right)}\)
Cho 1/x + 1/y + 1/x =0. Tính A= xy/z2 + yz/x2 + zx/y2
Cho x^2+y^2+z^2=19 và 17(xy+yz+zx)=105. Tính x+y+z =? (x,y,z>0) .......... cảm ơn ....^^
Cho x,y,z > 0 thỏa mãn xy + yz +zx = 1.Chứng minh
\(\frac{x-y}{z^2+1}\)+\(\frac{y-z}{x^2+1}\)+\(\frac{z-x}{y^2+1}\)=0
cho 3 số x ,y ,z #0 thõa mãn 1/x + 1/y +1/z=0 . tính : P =(xy/z^2 + yz/x^2 +zx/y^2 -2)^2013
cho x,y,z khác 0 và x khác y khác z , thỏa mãn :
x^2 -xy = y^2-yz = z^2 - zx = a
1 ) cmr : a khác 0
2) cmr ; 1/x + 1/y + 1/z = 0
3 ) tính M = x/z + z/y + y /x