Bài 1: Cho tam giác ABC có AB = AC, D thuộc AB, E thuộc AC để AD = AE. Gọi K là giao điểm BE và CD.
a) Chứng minh: BE = CD. b) tam giác KBD = tam giác KCE
Bài 2: Tam giác ABC có \(\widehat{A}\) = 90\(^o\), AB = AC. Qua A vẽ đường thẳng d sao cho B và C nằm cùng phía đối với đường thẳng d. Vẽ BH và CK vuông góc với d. Chứng minh:
a) AH = CK b) HK = BH + CK
Bài 3: Tam giác ABC có \(\widehat{A}\) = 60\(^o\),tia phân giác \(\widehat{B}\) cắt AC ở D, phân giác \(\widehat{C}\) cắt AB ở E, BD cắt CE tại I.
a) Tính \(\widehat{BIC}\)
B) Vẽ IK là phân giác của \(\widehat{BIC}\) (K thuộc BC). Chứng minh: IE = ID.
huhu m.n giúp mk vs nhé mai đi hc sớm r. thanks nhìu!!! lm câu nào cx đc.
Cho tam giác ABC có AB < AC. Kẻ tia phân giác AD của \(\widehat{BAC}\) \(\left(D\in BC\right)\). Trên cạnh AC lấy E sao cho AE = AB. Trên tia AB lấy điểm F sao cho AF = AC. CMR :
a, BD = DE
b, Tam giác BDF = tam giác EDC
c, F, D,E thẳng hàng
Cho tam giác ABC có \(\widehat{A}\) <90 độ. Vẽ ra phía ngoài tam giác đó hai đoạn thẳng AD vuông góc và bằng AB, AE vuông góc và bằng AC. Kẻ AH vuông góc với BC. CM: HA đi qua trung điểm DE
Cho tam giác ABC có \(\widehat{B}=\widehat{C}\). Tia phân giác của \(\widehat{B}\) cắt AC ở M và tia phân giác của \(\widehat{C}\) cắt AB ở N.
a) So sánh BM và CN;
b) Chứng minh: \(\Delta ABM=\Delta ACN\).
Bài 1: Cho tam giác ABC có góc B=50 độ. Từ đỉnh A kẻ đường thẳng song song với BC cắt tia phân giác của góc B ở E.
a/ CM: Tam giác ABC cân.
b/ Tính góc BAE.
Bài 2: Cho tam giác cân ABC (AB=AC). Trên các cạnh AB và AC lấy tương ứng 2 điểm D và E sao cho AD=AE. Gọi M là trung điểm của BC. CMR:
a/ DE song song BC
b/ Tam giác MBD=tam giác MCE
c/ Tam giác AMD=tam giác AME
cho \(\Delta ABC\) có AB < AC và \(\widehat{A}\) nhọn (vẽ \(\widehat{A}\) càng nhỏ thì hình càng rõ).dựng ra phía ngoài \(\Delta ABC\) 2 tam giác vuông ở A là \(\Delta ABEvà\Delta ACD\) sao cho AB=AE;AD=AC
a)CMR:BD=CE
b)CE cắt BA và BD lần lượt tại I và O.CMR:\(\widehat{AEC}phụ\)với \(\widehat{BIO}\)
c)CMR:\(\widehat{IBO}phụ\)với \(\widehat{BIO}vàCE\perp BD\)
giúp vs tối tớ đi học gồi
Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D. Từ D kẻ đường thẳng song song với BC cắt tia đối AC tại E. Hai tia phan giác của hai góc AED và góc ABC cắt nhau tại O.
Chứng minh góc BOE = \(\frac{1}{2}\) ( \(\widehat{ABC}+\widehat{ACB}\)
Cho tam giác ABC có góc \(\widehat{B}>\widehat{C}\) . Kẻ AH vuông góc với BC. Kẻ tia phân giác AD của góc \(\widehat{BAC}\) (D \(\in\)BC)
a) Chứng minh rằng \(\widehat{HAD}=\frac{\widehat{B}-\widehat{C}}{2}\)
b) Tính \(\widehat{A}\), biết \(\widehat{HAD=15}\) và \(3\widehat{B}=5\widehat{C}\)
Cho tam giác ABC, \(\widehat{A}=90^0;BC=2AB\). Tia phân giác của góc B cắt cạnh AC tại D.
a/ Chứng minh rằng DB=DC
b/ Tính góc B, góc C của tam giác ABC
Cho tam giác ABC có \(\widehat{A}\) <90 độ, AB=AC. Kẻ CE vuông góc với AC ( A\(\in\) AB), BD vuông góc với AC(D\(\in\) AC). Gọi O là giao điểm của BD và CE. CMR:
a, BD=CE
b, OE=OD
c, OB=OC
d, AO là tia phân giác của góc BAC.