Cho hai số thực dương x,y thõa mãn : x^4+y^4+1/xy=xy + 2
Tìm GTLN VÀ GTNN của P=xy
Cho hai số thực x, y thỏa mãn \(x^2+y^2+xy=1\) . Tìm GTLN của biểu thức P=xy
Cho 2 số thực dương x,y thỏa mãn \(x+y=5\). Tìm GTNN của \(P=\frac{4x+y}{xy}+\frac{2x-y}{4}\)
Cho hai số thực x,y thỏa mãn \(x^2+y^2-xy=1\) . Tìm số thực k lớn nhất sao cho \(x^4+y^4-x^2y^2\ge k\)
Cho x, y, z là các số thực dương thoả mãn xyz=1. Tìm GTNN của P = \(\frac{x^3+1}{\sqrt{x^4+y+z}}+\frac{y^3+1}{\sqrt{y^4+z+x}}+\frac{z^3+1}{\sqrt{z^4+x+y}}-\frac{8\left(xy+yz+zx\right)}{xy+yz+zx+1}\)
Cho các số thực x, y thỏa mãn :\(2\left(x^2+y^2\right)=xy-6x+9y-11\)
Tìm giá trị nhỏ nhất của biểu thức: \(P=\left(x+1\right)^4+\left(y-2\right)^4\)
Cho hai số thực x,y khác 0 thay đổi và thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy.\) Tìm giá trị lớn nhất của biểu thức \(M=\frac{1}{x^3+y^3}\)
Cho hai số thực x,y khác 0 thay đổi và thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy.\) Tìm giá trị lớn nhất của biểu thức \(M=\frac{1}{x^3+y^3}\)
Cho hai số thực x,y khác 0 thay đổi và thỏa mãn \(\left(x+y\right)xy=x^2+y^2-xy.\) Tìm giá trị lớn nhất của biểu thức \(M=\frac{1}{x^3+y^3}\)