cho các số thực dương x , y thỏa mãn
\(\frac{y}{2x+3}=\frac{\sqrt{2x+3}+1}{\sqrt{y}+1}\)
tìm giá trị nhỏ nhất của biểu thức Q = xy-3y-2x-3
Cho hai số thực dương x,y và thỏa mãn x>= 3y , tìm giá trị nhỏ nhất của biểu thức A = \(\frac{x^3+y^3}{xy}\)
Cho các số thực dương x,y,z thỏa 4x + 3y + 4z = 22
Tìm giá trị nhỏ nhất của biểu thức \(P=x+y+z+\frac{1}{3x}+\frac{2}{y}+\frac{3}{z}\)
cho xy là các số thực dương thỏa mãn\(xy+1\le x\)
tìm giá trị nhỏ nhất của biểu thức \(Q=\frac{x+y}{\sqrt{3x^2-xy+y^2}}\)
Cho x,y,z là các số thực dương thỏa mãn đẳng thức xy+yz+zx=5. Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{3x+3y+3z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{6\left(z^2+5\right)}}\)
Cho x, y là các số thực dương thỏa mãn x+y<=1. Tìm giá trị nhỏ nhất của biểu thức P=\(\left(\frac{1}{X} +\frac{1}{Y}\right).\sqrt{1+X^2Y^2}\)
cho ba số thực không âm x,y,z thỏa mãn xyz=1 . tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M=\(\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\)
Cho các số thực dương thay đổi x, y thỏa mãn điều kiện 3x + y \(\le\)1. Tìm giá trị nhỏ nhất của biểu thức A = \(\frac{1}{x}+\frac{1}{\sqrt{xy}}\)
cho hai số thực dương x,y thỏa mãn \(x+y\le1\) .Tìm giá trị nhỏ nhất cả biểu thức : \(A=\frac{1}{x^2+y^2}+\frac{1}{xy}\)