Đk:\(-1\le x\le3\) (chính là cái bài cho kia)
Nếu \(x=0\) thì \(A=\sqrt{3}\) ta sẽ chứng minh nó là GTNN của \(A\)
Tức là ta cần chứng minh
\(\sqrt{-x^2+2x+3}+\sqrt{3}\le\sqrt{-x^2+4x+12}\)
Sau khi bình phương 2 vế rồi rút gọn ta cần chứng minh
\(\sqrt{-3\left(x^2+2x+3\right)}\le x+3\)
Từ khi \(x+3>0\), ta cần chứng minh
\(3\left(-x^2+2x+3\right)\le\left(x+3\right)^2\Leftrightarrow x^2\ge0\) (Đúng)
Vậy \(A_{Min}=\sqrt{3}\Leftrightarrow x=0\)