Do ∫ 1 m x + m 2 - 8 d x = 2 3 3 x + 1 + C nên
1 m x + m 2 - 8 = 2 3 3 x + 1 + C = 1 3 x + 1 ⇒ m = 3
Khi đó I = ∫ m - 2 e x ln 2 x d x = 1 4 e x + 1
Đáp án C
Do ∫ 1 m x + m 2 - 8 d x = 2 3 3 x + 1 + C nên
1 m x + m 2 - 8 = 2 3 3 x + 1 + C = 1 3 x + 1 ⇒ m = 3
Khi đó I = ∫ m - 2 e x ln 2 x d x = 1 4 e x + 1
Đáp án C
1. Cho hàm số y=2x-1/x-1 . Lấy M thuộc C với XM=m . tiếp tuyến của C tại M cắt 2 đường tiệm cận tại A,B . Gọi I là giao của 2 đường tiệm cận . CMR : M là trung điểm của AB và tam giác IAB có diện tích không phụ thuộc vào M
2.cho y=x+2/x-3 tìm M thuộc C sao cho khoảng cách từ M đến 2 đường tiệm cận C bằng nhau
3. cho y = x+2/x-2 tìm M thuộc C sao cho M cách đều hai trục tọa độ . viết pttt của C biết tiếp tuyến đó đi qua A(-6;5)
4 . cho y = x+1/x-1 . CMR (d) : 2x-y+m=0 luôn cắt C tại A,B trên 2 nhánh của (C) . tìm m để AB ngắn nhất
Cho hai số thực không âm x,y ≤ 1. Biết P = l n ( 1 + x 2 ) ( 1 + y 2 ) + 8 17 ( x + y ) 2 có giá trị nhỏ nhất là - a b + 2 ln c d trong đó a, b, c, d là số tự nhiên thỏa mãn ước chung của (a,b) = (c,d) = 1. Giá trị của a+b+c+d là
A. 406
B. 56
C. 39
D. 405
Cho hàm số f x = a x 4 + b x 2 + c có đồ thị (C). Gọi △ : y = d x + e là tiếp tuyến của (C) tại điểm A có hoành độ x=-1. Biết △ cắt (C) tại hai điểm phân biệt M , N M , N ≠ A có hoành độ lần lượt x=0;x=2. Cho biết ∫ 0 2 d x + e - f x d x = 28 5 . Tích phân ∫ - 1 0 f x - d x - e d x bằng
A. 2 5
B. 1 4
C. 2 9
D. 1 5
Cho x, y là các số thực thỏa mãn x + y = x - 1 + 2 y + 2 Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của P = x 2 + y 2 + 2 ( x + 1 ) ( y + 1 ) + 8 4 - x - y Tính giá trị M + m
A. 41
B. 44
C. 42
D. 43
Trong không gian Oxyz cho tam giác ABC có A ( 2;3;3) phương trình đường trung tuyến kẻ từ B là x − 3 − 1 = y − 3 2 = z − 2 − 1 , phương trình đường phân giác trong của góc C là x − 2 2 = y − 4 − 1 = z − 2 − 1 . Biết rằng u → = m ; n ; − 1 là một véc tơ chỉ phương của đường thẳng AB. Tính giá trị của biểu thức T = m 2 + n 2
A. T = 1
B. T = 5
C. T = 2
D. T = 10
câu 1 : Giải pt
\(\sqrt{x-1}+\sqrt{2x-1}=5\)
câu 2 : cho biểu thức
\(P=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\)
a) rút gọn P
b) tìm x để P <1
câu 3 : cho
\(P=\left(1-\frac{2\sqrt{x}}{3\sqrt{x}+1}+\frac{\sqrt{x}+1}{9x-1}\right):\left(\frac{9\sqrt{x}+6}{3\sqrt{x}+1}\right)\)
a) rút gọn P
b) tìm x để P =\(\frac{6}{5}\)
c) cho m>1 . C/m P có 2 giá trị x thõa mãn P=m
Cho hàm số f(x) liên tục trên (1;e) thỏa mãn x f x − f 1 + ln x = x 2 + x − 2 − ln x . Biết rằng ∫ 2 e f x d x = a e 2 + b e + c với a , b , c ∈ Q . Tính giá trị của T = a + b + c.
A. T = 11 2 .
B. T = -4
C. T = − 5 2 .
D. T = 3
Cho hàm số f x = x − 3 3 x 2 + 8. Tính tổng các giá trị nguyên của m để phương trình f x − 1 + m = 2 có đúng 3 nghiệm phân biệt.
A. -2
B. -6
C. 8
D. 4
Cho hàm số y = f ( x ) = x 3 – ( 2 m - 1 ) x 2 + ( 2 - m ) x + 2 . Tập tất cả các giá trị của m để đồ thị hàm số y = f x có 5 điểm cực trị là a b ; c với a, b, c là các số nguyên và a b là phân số tối giản. Tính a+b+c
A. 11
B. 8
C. 10
D. 5
Cho hàm số f(x) liên tục trong đoạn [1;e], biết ∫ 1 e f ( x ) x d x = 1 , f(e) = 2. Tích phân ∫ 1 e f ' ( x ) ln x d x = ?
A. 1
B. 0
C. 2
D. 3