5.
M là trung điểm BC \(\Rightarrow BM=\dfrac{1}{2}BC=a\)
Trong tam giác vuông ABM:
\(AM=\sqrt{AB^2+BM^2}=\sqrt{\left(2a\right)^2+a^2}=a\sqrt{5}\)
\(\left|\overrightarrow{AB}+\overrightarrow{BM}\right|=\left|\overrightarrow{AM}\right|=AM=a\sqrt{5}\)
6.
Trong tam giác vuông ABC:
\(AC=\sqrt{AB^2+BC^2}=\sqrt{\left(2a\right)^2+\left(2a\right)^2}=2a\sqrt{2}\)
\(\left|\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\right|=\left|\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AC}\right|=\left|\overrightarrow{AC}+\overrightarrow{AC}\right|=2\left|\overrightarrow{AC}\right|=2AC=4a\sqrt{2}\)