Lời giải:
Gọi thiết diện qua trục là tam giác đều \(ABC\) có cạnh là $a$ , tâm đường tròn là \(H\)
Ta có \(BH=\frac{a}{2},AH=\frac{\sqrt{3}a}{2}\)
Theo hệ thức trong tam giác vuông \(\frac{1}{d(H,AB)^2}=\frac{1}{BH^2}+\frac{1}{AH^2}=\frac{1}{9}\)
\(\Leftrightarrow \frac{16}{3a^2}=\frac{1}{9}\Rightarrow a=4\sqrt{3}\)
Suy ra diện tích toàn phần của hình nón:
\(S_{tp}=\pi Rl+\pi R^2=36\pi\)