Vì \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{2x}{3}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{3z}{\dfrac{15}{4}}\)
Áp dụng t/c dãy tỉ số bằng nhau , ta có :
\(\dfrac{2x}{3}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{3z}{\dfrac{15}{4}}=\dfrac{2x+y-3z}{3+\dfrac{4}{3}-\dfrac{15}{4}}=\dfrac{14}{\dfrac{7}{12}}=24\)
\(\Rightarrow\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}=24\)
\(\Rightarrow\left\{{}\begin{matrix}2x=72\\3y=96\\4z=120\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=36\\y=32\\z=30\end{matrix}\right.\)
Từ \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)
=> \(\dfrac{2x}{36}=\dfrac{3y}{48}=\dfrac{4z}{60}\)
=> \(\dfrac{2x}{36}=\dfrac{y}{16}=\dfrac{z}{15}\)
=> \(\dfrac{2x}{36}=\dfrac{y}{16}=\dfrac{3z}{45}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{2x}{36}=\dfrac{y}{16}=\dfrac{3z}{45}=\dfrac{2x+y-3z}{36+16-45}=\dfrac{14}{7}=2\)
Từ \(\dfrac{2x}{36}=2,=>x=\dfrac{2.36}{2}=36\)
\(\dfrac{y}{16}=2,=>y=2.16=32\)
\(\dfrac{3z}{45}=2,=>z=\dfrac{45.2}{3}=30\)
Vậy x=36 ,y=32 ,z=30