ta có: x2y+xy2+x+y=(x2y+x)+(xy2+y)=x(xy+1)+y(xy+1)
=(x+y)(xy+1)=10
mà xy=11
=> x+y=\(\dfrac{5}{6}\)
Ta có: x2+y2=(x+y)2-2xy=\(\left(\dfrac{5}{6}\right)^2-2.11=-\dfrac{767}{36}\)
Bài giải
Ta có: $x^2+xy^2+x+y=10$
$<=>(xy+1)(x+y)=10$ mà $xy=11$, ta có:
$(xy+1)(x+y)=10$
$<=> 12.(x+y)=10$
$<=>x + y$ =\(\dfrac{10}{12}=\dfrac{5}{6}\)
Ta có:
$x^2+y^2=(x+y)^2 - 2xy$
=\(\left(\dfrac{5}{6}\right)^2-2.11\)
\(=\dfrac{25}{36}-2.11\\
=-\dfrac{767}{36}\)
Vậy \(x^2+y^2=-\dfrac{767}{36}\)