Ta có :
+ ) \(x^2-y^2=1\)
\(\Rightarrow\left(x^2-y^2\right)^3=1^3\)
\(\Rightarrow x^2-y^6-3x^2y^2\left(x^2-y^2\right)=1\)
\(\Rightarrow x^6-y^6=1+3x^2y^2\left(x^2-y^2\right)\)
\(\Rightarrow x^6-y^6=1+3x^2y^2\)
+ ) \(x^2-y^2=1\)
\(\Rightarrow\left(x^2-y^2\right)^2=1^2\)
\(\Rightarrow x^4-2x^2y^2+y^4=1\)
\(\Rightarrow x^4+y^4=1+2x^2y^2\)
Khi đó :
\(A=2\left(x^6-y^6\right)-3\left(x^4+y^4\right)+1\)
\(=2\left(1+3x^2y^2\right)-3\left(1+2x^2y^2\right)+1\)
\(=0\)
Vậy \(A=0\).