Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
thien lu

biết x ;y;z khác 0 và x+y+z=0 chứng minh

\(\left(\frac{x-y}{z}+\frac{y-z}{x}+\frac{z-x}{y}\right)\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right)=9\)=9

Trần Việt Linh
19 tháng 12 2016 lúc 13:12

Đặt: \(\frac{x-y}{z}+\frac{y-z}{x}+\frac{z-x}{y}=M\)

Ta có: 

\(M\cdot\frac{z}{x-y}=1+\frac{z}{x-y}\cdot\left(\frac{y-z}{x}+\frac{z-x}{y}\right)=1+\frac{z}{x-y}\cdot\frac{y^2-yz+xz-x^2}{xy}\)

\(=1+\frac{z}{x-y}\cdot\frac{\left(x-y\right)\left(z-x-y\right)}{xy}=1+\frac{2z^2}{xyz}=1+\frac{2z^3}{xyz}\)            (1)

Tương tự ta cũng có:

\(M\cdot\frac{x}{y-z}=1+\frac{2x^3}{xyz}\)              (2)

\(M\cdot\frac{y}{z-x}=1+\frac{2y^3}{xyz}\)            (3)

Từ (1);(2);(3) suy ra

\(M\cdot\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right)=3+\frac{2\left(x^3+y^3+z^3\right)}{xyz}\)

Mà \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

Nên:

\(M\cdot\left(\frac{z}{x-y}+\frac{x}{y-z}+\frac{y}{z-x}\right)=3+\frac{2\cdot3xyz}{xyz}=9\)

=>đpcm


Các câu hỏi tương tự
Nguyễn Quang Tùng
Xem chi tiết
Thân Nhật Minh
Xem chi tiết
Đặng Nguyễn Khánh Uyên
Xem chi tiết
Phạm Ngọc Thanh
Xem chi tiết
Nguyễn__ Hiền 6
Xem chi tiết
NGuyễn Ngọc Hạ Vy
Xem chi tiết
NGuyễn Ngọc Hạ Vy
Xem chi tiết
Ngô Minh Tâm
Xem chi tiết
lucky tomato
Xem chi tiết