1, Một phép chia có thương bằng 82, số dư bằng 47, số bị chia nhỏ hơn 4000. Tìm số chia
2, CMR: Nếu 2 số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7
3, CMR: Số có dạng \(\overline{aaa}\) bao giờ cũng chia hết cho 37
4, CMR: Với mọi số tự nhiên n thì tích (n+3) x (n+6) chia hết cho 2
5, Tìm các chữ số a và b sao cho a-b=4 và \(\overline{87ab}\) chia hết cho 9
Giúp mk nha các bn
1. a, Cho B = 3 + 3^3 + 3^5 +...+ 3^1991. Chứng minh rằng: B chia hết cho 3 ; B chia hết cho 41
b, Chứng minh rằng: (99^5 - 98^4 - 97^3 - 96^3) chia hết cho 2, cho 5.
c, A = 999993^1999 - 555557^1997. Chứng minh: A chia hết cho 5.
d, A = 8n + 111..1 ( n chữ số 1 ). Chứng minh: A chia hết cho 9.
e, Cho ( abc + deg ) chia hết cho 37. Chứng minh: abcd chia hết chio 37.
2. Tìm 2 số biết rằng tổng của chúng gấp 7 lần hiệu của chúng, còn tích của chúng gấp 192 lần hiệu của chúng.
3. Tìm số nhỏ hơn 100, biết rằng khi chia số đó cho 5 thì được dư là 3, chia cho 11 dư 5.
tìm chữ cái đứng trước kết quả đúng
(A) nếu 1 số chia hết cho 2 thì cũng chia hết cho 4
(B) nếu 1 số chia hết cho 9 thì cũng chia hết cho 3
(C) nếu 1 số không chia hết cho 2 thì cũng không chia hết cho 5
(D) nếu 1 số không chia hết cho 10 thì cũng không chia hết cho 5
(E) nếu mỗi số hạng của tổng chia hết cho 4 thì tổng chia hết cho 4
(G) nếu mỗi số hạng của tổng không chia hết cho 3 thì tổng không chia hết cho 3
(H) một hiệu chia hết cho 5 thì số hạng của hiệu chia hết cho 5
(I) nếu 1 số chia hết cho 7 thì tích của nó với 1 số bất kì cũng chia hết cho 7
Câu 1: Chứng minh rằng \(\overline{abcabc}\) chia hết cho 7, 11, 13.
Tìm tập hợp các số tự nhiên n vừa chia hết cho 2 vằ chia hết cho 5 và 235 < x < 312.
1) Chứng tỏ rằng số có dạng aaa aaa bao giờ cũng chia hết cho 11 (aaa aaa có gạch trên đầu)
2) Chứng tỏ rằng số có dạng abc abc bao giờ cũng chia hết cho 11 (abc abc có gạch trên đầu)
3) Chứng tỏ rằng lấy một số có hai chữ số, cộng với một số gồm hai chữ số ấy viết theo thứ tự ngược lại, ta luôn luôn được một số chia hết cho 11 (chẳng hạn 37 + 73 = 110, chia hết cho 11).
Giúp mình vs, cần gấp. Bài này là bài 120, 121, 122 trong sách bài tập lớp 6. Không được giải theo sách bài tập nha!
Tìm các số có 3 chữ số, biết rằng số phải tìm chia hết cho 5 và chia hết cho 9. Số phải tìm chia cho 11 dư 5.
Bài 1 : Tìm 2 số tự nhiên x,y biết số số này thêm1 thì chia hết cho số kia.
Bài 2 :Tìm số có 4 chữ số chia hết cho 11 và được tổng các chữ số của chúng cũng chia hết cho 11
1. Thực hiện tính :
a, ( 3^2016 + 3^2015 ) : 3^2015
b, ( 14^50 + 14^49 ) : 14^48
c, 7^76 + 51.7^74 / 7^75 - 3.7^74 ( / là chỉ phân số )
d, 0 - 1 + 2 - 3 + 4 - 5 + 6 - 7 +...+ 102
2. Tìm x, biết:
x^5 = x^3
3. Tìm số abcde, biết:
abcde . 9 = edcba
4. Tìm x,y để:
a, 1x85y chia hết cho 2 ; 3 ; 5
b, 10xy5 chia hết cho 45.
c, 2x3y chia hết cho 2 ; 5 và chia cho 9 dư 1
5. Chứng minh:
a, ( 10^3 + 8 ) chia hết cho 18
b, ( 10^10 + 14 ) chia hết cho 6
c, Cho ( ab + cd + eg ) chia hết cho 11 thì abcdeg chia hết cho 11
d,Cho abc = 2.deg. Chứng minh: abcdeg chia hết cho 23 ; 29.
e, Cho abc chia hết cho 27. Chứng minh: bca chia hết cho 27.
Giải giúp mình với nha mọi người.