cho phương trình : x2 - (m+1) +m - 2 =0 (1)
tìm m để :
a) phương trình (1) có 2 nghiệm x1,x2 là độ dài 2 cạnh góc vuông có cạnh huyền bằng 10
b) phương trình (1) có 2 nghiệm x1, x2 sao cho biểu thức P= | x1 -x2 | đạt giá trị nhỏ nhất
cho phương trình \(x^2-4mx+9\left(m-1\right)^2=0\) giả sử phương trình đã cho có hai nghiệm x1,x2 và biểu thức liên hệ giữa các nghiệm độc lập đối với tham số m có dạng là \(\left(x1+x2+a\right)^2=bx1x2\) .giá trị b/a là
cho phương trình x2 - (m+1)x +m2 -2m +2 =0 , tìm m để phương trình có 2 nghiệm x1 , x2 sao cho biểu thức P = x12 +x22 đạt giá trị lớn nhất
Cho phương trình x2 - (2m+1)x + m2 +1 = 0 , với m là tham số . Tìm tất cả các giá trị m ∈ Z để phương trình có hai nghiệm phân biệt x1 , x2 sao cho biểu thức \(P=\dfrac{x_1x_2}{x_1+x_2}\)
có giá trị là số nguyên
Cho phương trình : x2 - ax +1 =0 . Tính theo a giá trị biểu thức A= x15 +x25 , trong đó x1 ; x2 là hai nghiệm của phương trình đã cho
Cho phương trình: 2x2 + (2m-1)x +m-1=0
a.Tìm m để phương trình có 2 nghiệm x1, x2 thoả mãn 3x1 -4x2 =11
b.Tìm đẳng thức liên hệ giữa x1, x2 không phụ thuộc vào m
c.Với giá trị nào của m thì x1, x2 cùng dương
Cho phương trình \(x^2-2mx+4m-6=0\) Tìm giá trị của tham số m để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn :
a) 0<x1<2<x2
b) 0<x1<x2<2
Giải các bất phương trình sau:
a.(x+1)(-x2+3x-2)<0
b.\(\sqrt{x^2-5x+4}+2\sqrt{x+5}>2\sqrt{x-4}+\sqrt{x^2+4x-5}\)
Gọi x1, x2 là hai nghiệm của phương trình \(x^2-3x+m=0\)
x3, x4 là hai nghiệm của phương trình \(x^2-12x+n=0\). Biết rằng \(\dfrac{x_2}{x_1}=\dfrac{x_3}{x_2}=\dfrac{x_4}{x_3}\) và n dương . Hỏi giá trị của m thuộc khoảng nào dưới đây
A( 6; 9) B (-4; -1) C(-1;3) D(3;6)