F x là một nguyên hàm của hàm số f x = 3 x 2 + 1 2 x + 1 . Biết F 0 = 0 , F 1 = a + b c ln 3 , trong đó a, b, c là các số nguyên dương và b c là phân số tối giản. Khi đó giá trị biểu thức a + b + c bằng
A. 4
B. 3
C. 12
D. 9
Cho f(x) là hàm liên tục trên đoạn 0 ; a thỏa mãn f x f a − x = 1 f x > 0 , ∀ x ∈ 0 ; a và ∫ 0 a d x 1 + f x = b a c , trong đó b, c là hai số nguyên dương và b c là phân số tối giản. Khi đó b + c có giá trị thuộc khoảng nào dưới đây?
A. 11 ; 22
B. 0 ; 9
C. 7 ; 21
D. 2017 ; 2020
Cho ∫ 1 2 ln x ( x + 1 ) 2 d x = a b l n 2 - l n c với a,b,c là các số nguyên dương và a/b là phân số tối giản. Tính giá trị của biểu thức S = a + b c
A. S = 4 3
B. S = 8 3
C. S = 6 5
D. S = 10 3
∫ 4 6 x 2 + 4 x + 1 x 2 + x Biết rằng với a, b, c là các số nguyên dương, a b là phân số tối giản. Tính giá trị của biểu thức S = a + b + c
A. S = 199
B. S = 198
C. S = 395
D. S = 396
Cho ∫ 0 9 16 1 x + 1 + x + 1 d x = a - b ln 2 c với a,b,c là các số nguyên dương và a/c tối giản. Giá trị của biểu thức a+b+c bằng
A. 43.
B. 48.
C. 88.
D. 33.
Biết ∫ 0 π 4 ( 1 + tan x ) 5 c o s 2 x d x = a b ; trong đó a, b là 2 số nguyên dương và a/b là phân số tối giản. Mệnhđề nào dưới đây đúng?
A. a < b
B. a b = 1
C. a - 10 b = 1
D. a 2 + b 2 = 1
Cho các số thực dương x, y, z và thỏa mãn x + y + z = 3. Biểu thức P = x 4 + y 4 + 8 z 4 đạt GTNN bằng a b , trong đó a, b là các số tự nhiên dương, a b là phân số tối giản. Tính a - b
A. 234.
B. 523.
C. 235.
D. 525.
Cho hàm số f x = 3 x − 4 + x + 1 .2 7 − x − 6 x + 3 . Giả sử m 0 = a b ( a , b ∈ ℤ , a b là phân số tối giản) là giá trị nhỏ nhất của tham số thực m sao cho phương trình f 7 − 4 6 x − 9 x 2 + 2 m − 1 = 0 có số nghiệm nhiều nhất. Tính giá trị của biểu thức P = a + b 2
A. P = -1
B. P = 7
C. P = 11
D. P = 9
Cho hàm số y = tan 3 x − 1 c o s 2 x + 2 . Giá trị nhỏ nhất của hàm số trên 0 ; π 2 là phân số tối giản a b , ở đó a , b là số nguyên và b > 0 . Tính hiệu a − b .
A. 50
B. - 4
C. 4
D. - 50