\(VT=\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)+\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)\)
\(=A+B\)
\(A=\frac{a}{b+c}+1+\frac{b}{c+a}+1+\frac{c}{a+b}+1-3=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\)
\(\ge\left(a+b+c\right).\frac{9}{2\left(a+b+c\right)}-3=\frac{3}{2}\)
\(B=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\frac{a+b+c}{2}=\frac{1}{2}\)
\(A+B\ge\frac{3}{2}+\frac{1}{2}=2\)
Biểu thức B có lệch 1 chút, nhưng vẫn áp dụng bất đẳng thức \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\) và vẫn ra kết quả như trên.