a) Ta có: Tam giác ABC vuông=> góc BAC= góc BAD=90
Xét tam giác ABC và ABD có
AB: cạnh chung
góc BAC=DAB
AC=AD
=> ΔABC = ΔABD(c.g.c)
b. A là trung điểm DC=> MA là trung tuyến tam giác MDC
Mặt khác MA vuông góc DC=> Tam giác MCD cân tại M=> MC=MD
Xét ΔMBD và ΔMBC:
MB: cạnh chung
MD=MC(c/m trên)
BC=BD( ΔABC = ΔABD)
=> ΔABC = ΔABD
ta có : CABˆ+ DAB^ = 180( 2 góc kề bù )
=> 90 + DAB^ =180
=> DAB^ = 90
Xét △ABC và △ABD có:
AD = AC ( gt )
CABˆ = DABˆ=90
AB cạnh chung
=> △ABC = △ABD ( c-g-c )
=> DB = CB
ABDˆ= ABC^ <=> MBDˆ = MBC^
b ) Xét △MBD và △MBC có :
MAD^ = MBC^ ( cmt )
DB = DC ( cmt )
MB cạnh chung
=> △MBD = △MBC ( c-g-c ).