Bài 1 tìm a,b biết
a) a+b=30; BCNN=6 UCLN
b) 7a=11b; UCLN =45
Bài 2 Tìm n để các số sau có UCLN=1
a) 3n+4 và 5n+7
b) 8n+10 và 7n+10
Ai giải đc giúp mik nha
tìm a và b. a< b
a) BCNN( a và b) + UCLN (a,b)=19
b) BCNN ( a,b) -UCLN (a,b)=3
bài 4 cmr nếu a/b=c/d thì
a. 5a+3b/5a-3b=5c+3d/5c-3d
b.7a^2+3ab/11a^2-8b^2/7c^2+3cd/11c^2-8b^2
a) Cho (7a - 11b)* ( 4c + 5d )= (4a + 5b)* (7c -11d). Chứng minh : a/b = c/d
b) Cho 4 số tự nhiên a,b,c,d thỏa mãn a + c = 2b và 1/c= 1/2* (1/b + 1/d)
Chứng minh 4 số trên lặp thành 1 tỉ lệ thức
cho a/b = c/d cm
a,\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
b,\(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)
Bài 1: Tìm a, b, c biết:
\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\)và \(a-b+c=49\)
Bài 2: Tìm x, y, z biết:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x=2y+3z=14\)
Bài 3: Chứng minh rằng:
Nếu \(\frac{a}{b}=\frac{c}{d}\)thì
\(a,\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-5d}\)
\(b,\frac{7a+8b}{7a-8b}=\frac{7c+7d}{7c-7d}\)
Cho tỉ lệ thức a/b=c/d CMR :
a) \(\frac{7a+8b}{7a-8b}=\frac{7c+8d}{7c-8d}\)
b) \(\frac{11a-5b}{3a+4b}=\frac{11c-5d}{3c+4d}\)
c) \(\frac{a.b}{c.d}=\frac{a^2-b^2}{c^2-d^2}\)
d) \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)
e) \(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
help me 3 l-i-k-e
Tìm a, b, c biết:
a, a+3/5=b-2/3=c-1/7 và 3a-5b+7c=86
b, 5a=8b=3c và a-2b+c=34
c, 15a=10b=6c và abc=-1920
d, a/2=2b/3=3c/4 và abc=-108
e, a/2=b/3=c/4 và a^2+3b^2-2c^2=-16
UCLN (24/40/56)
a,4
b,8
c,12
d,24