a: Để P là số nguyên thì \(14⋮3\sqrt{x}+6\)
=>\(3\sqrt{x}+6\in\left\{1;-1;2;-2;7;-7;14;-14\right\}\)
=>\(3\sqrt{x}\in\left\{-5;-7;-4;-8;1;-13;8;-20\right\}\)
=>\(\sqrt{x}\in\left\{\dfrac{1}{3};\dfrac{8}{3}\right\}\)
=>\(x\in\left\{\dfrac{1}{9};\dfrac{64}{9}\right\}\)
mà x nguyên
nên \(x\in\varnothing\)
b:
Để P là số nguyên thì \(14⋮3\sqrt{x}+6\)
=>\(3\sqrt{x}+6\in\left\{1;-1;2;-2;7;-7;14;-14\right\}\)
=>\(3\sqrt{x}\in\left\{-5;-7;-4;-8;1;-13;8;-20\right\}\)
=>\(\sqrt{x}\in\left\{\dfrac{1}{3};\dfrac{8}{3}\right\}\)
=>\(x\in\left\{\dfrac{1}{9};\dfrac{64}{9}\right\}\)