Bài 15.Cho tam giác ABC ,trung tuyến CM, Qua điểm Q trên AB vẽ đường thẳng d song song với CM, Đường thẳng d cắt BC tại R và cắt AC tại P. Chứng minh nếu QA.QB = QP.QR thì tam giác ABC vuông tại C
Bài 17. Cho tam giác ABC (AB=AC) có góc ở đỉnh bằng 200; cạnh đáy là a ; cạnh bên là b . Chứng minh rằng a3 + b3 = 3ab2 Bài 18. Cho 4 điểm A,E,F,B theothứ tự ấy trên 1 đường thẳng . Trên cùng 1 nửa mặt phẳng bờ AB vẽ các hình vuông ABCD ; FGHE. Gọi O là giao điểm của AG và BH. Chứng minh rằng các tam giác OHE và OBC đồng dạng . Chứng minh rằng các đường thẳng CE và FD cùng đi qua O
17)\(AH^2=\frac{3b^2}{4};\Delta BCD;AD=b-\frac{a^2}{b}\)
MÀ \(AD^2=AH^2+DH^2=b^2-ab+a^2\)