Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Khởi My

Bài 1: Tìm x,y\(\in\)Z biết: \(25-y^2=8.\left(x-2009\right)^2\)

B.Thị Anh Thơ
9 tháng 3 2019 lúc 19:23

Ta có
25 - y^2 = 8(x-2009)^2
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0
Mặt khác do
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe)
Do vậy chỉ tồn tại các giá trị sau
y^2 = 1, y^2 = 9, y^2 = 25
y^2 = 1; (x-2009)^2 = 3 (loại)
y^2 = 9; (x-2009)^2 = 2 (loại)
y^2 = 25; (x-2009)^2 = 0; x = 2009
Vậy pt có nghiệm nguyên (2009 , -5) ; (2009 , 5)

Mặc Chinh Vũ
9 tháng 3 2019 lúc 19:31

- Theo bài ra: \(25-y^2=8\left(x-2009\right)^2\)

- Có: \(y^2\ge0;\text{ }\forall y\in R\)

\(\Rightarrow25-y^2\le25;\text{ }\forall y\in R\)

- Có \(\left\{{}\begin{matrix}25-y^2\ge25\\25-y^2=8\left(x-2009\right)^2\end{matrix}\right.\Rightarrow8\left(x-2009\right)^2\ge25\)

\(\Rightarrow\left(x-2009\right)^2\ge\dfrac{25}{8}=3\dfrac{1}{8}\)

\(\Rightarrow\left(x-2009\right)^2\in\left\{0;1\right\}\)

\(\Rightarrow x-2009\in\left\{0;1\right\}\) , do \(x\in N\)

\(\Rightarrow x\in\left\{2009;2010\right\}\)

Sau đó bạn thử từng trường hợp để tìm y nhé.

Kết quả cuối cùng là \(\left(x;y\right)=\left(2009;5\right)\)


Các câu hỏi tương tự
Rosenaly
Xem chi tiết
Phan Văn Quyền
Xem chi tiết
Lê Hào 7A4
Xem chi tiết
 ♫ Love Music  ♫
Xem chi tiết
Yui Arayaki
Xem chi tiết
Quyên Nguyễn
Xem chi tiết
hello hello
Xem chi tiết
Phạm Thị Thanh Thanh
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết