Ta có
25 - y^2 = 8(x-2009)^2
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0
Mặt khác do
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe)
Do vậy chỉ tồn tại các giá trị sau
y^2 = 1, y^2 = 9, y^2 = 25
y^2 = 1; (x-2009)^2 = 3 (loại)
y^2 = 9; (x-2009)^2 = 2 (loại)
y^2 = 25; (x-2009)^2 = 0; x = 2009
Vậy pt có nghiệm nguyên (2009 , -5) ; (2009 , 5)
- Theo bài ra: \(25-y^2=8\left(x-2009\right)^2\)
- Có: \(y^2\ge0;\text{ }\forall y\in R\)
\(\Rightarrow25-y^2\le25;\text{ }\forall y\in R\)
- Có \(\left\{{}\begin{matrix}25-y^2\ge25\\25-y^2=8\left(x-2009\right)^2\end{matrix}\right.\Rightarrow8\left(x-2009\right)^2\ge25\)
\(\Rightarrow\left(x-2009\right)^2\ge\dfrac{25}{8}=3\dfrac{1}{8}\)
\(\Rightarrow\left(x-2009\right)^2\in\left\{0;1\right\}\)
\(\Rightarrow x-2009\in\left\{0;1\right\}\) , do \(x\in N\)
\(\Rightarrow x\in\left\{2009;2010\right\}\)
Sau đó bạn thử từng trường hợp để tìm y nhé.
Kết quả cuối cùng là \(\left(x;y\right)=\left(2009;5\right)\)