1: Đặt D(x)=0
=>x(x-3)=0
=>\(\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
2: Đặt D(x)=0
=>(x+1)(x-1)=0
=>\(\left[{}\begin{matrix}x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
3: Đặt D(x)=0
=>(x-3)(x+3)=0
=>\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
4: Đặt E(x)=0
=>\(\left(x-6\right)\left(6+\dfrac{x^2}{3}\right)=0\)
mà \(\dfrac{x^2}{3}+6>=6>0\forall x\)
nên x-6=0
=>x=6
5: Đặt E(x)=0
=>\(\left(x-\dfrac{1}{3}\right)\left(x^2+\dfrac{1}{3}\right)=0\)
mà \(x^2+\dfrac{1}{3}>=\dfrac{1}{3}>0\forall x\)
nên \(x-\dfrac{1}{3}=0\)
=>\(x=\dfrac{1}{3}\)