Ôn tập cuối năm phần số học

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Toán_Học

Bài 1:
Rút gọn biểu thức:
2332
với 2x2.

Bài 2:
3m là số vô tỷ. Tìm các số hữu tỷ a,b,c để:
23m+c=0
2) Tìm số tự nhiên có 4 chữ số (viết trong hệ thập phân) sao cho 2 điều kiện sau đồng thời thỏa mãn:
(i) Mỗi chữ số đứng sau lớn hơn chữ số đứng liền trước.
(ii) Tổng p+q lấy giá trị nhỏ nhất, trong đó p là tỉ số của chữ số hàng chục và chữ số hàng đơn vị còn q là tỉ số chữ số hàng nghìn và chữ số hàng trăm.

Bài 3:
1) Tìm tất cả các số nguyên x thỏa mãn:
|x10|+|x11|+|x+101|+|x+990|+|x+1000|=2012
2) Chứng minh rằng có thể chia một tam giác vuông có độ dài 3 cạnh là các số nguyên thành 6 phần diện tích bằng nhau và diện tích mỗi phần là số nguyên.

Lucy Heartfilia
6 tháng 6 2017 lúc 19:54

Hình như đây k phải toán lớp 6

Khánh Hạ
6 tháng 6 2017 lúc 20:03

Bài 1:
Đặt a=√2+x;b=√2−x(a,b≥0)a=2+x;b=2−x(a,b≥0)
⇒a2+b2=4;a2−b2=2x⇒a2+b2=4;a2−b2=2x
⇒A=√2+ab(a3−b3)4+ab=√2+ab(a−b)(a2+b2+ab)4+ab⇒A=2+ab(a3−b3)4+ab=2+ab(a−b)(a2+b2+ab)4+ab
⇒A=√2+ab(a−b)(4+ab)4+ab=√2+ab(a−b)⇒A=2+ab(a−b)(4+ab)4+ab=2+ab(a−b)
⇒A√2=√4+2ab(a−b)⇒A2=4+2ab(a−b)
⇒A√2=√(a2+b2+2ab)(a−b)=(a+b)(a−b)⇒A2=(a2+b2+2ab)(a−b)=(a+b)(a−b)
⇒A√2=a2−b2=2x⇒A=x√2⇒A2=a2−b2=2x⇒A=x2
Bài 2:
a3√m2+b3√m+c=0am23+bm3+c=0 (1)
Giả sử tồn tại (1) a3√m2+b3√m+c=0am23+bm3+c=0 (2)
Từ (1)(2) ⇒(b2−ac)3√m=(a2m−bc)⇒(b2−ac)m3=(a2m−bc)
Nếu a2m−bc≠0a2m−bc≠0 ⇒3√m=a2m−bcb2−ac⇒m3=a2m−bcb2−ac là số vô tỉ. Trái giả thiết!!
⇒{b2−ac=0a2m−bc=0⇒{b3=abcbc=am2⇒{b2−ac=0a2m−bc=0⇒{b3=abcbc=am2
⇒b3=a3m⇒b=a3√m⇒b3=a3m⇒b=am3. Nếu b khác 0 thì 3√m=bam3=ba là số vô tỉ. Trái Giả thiết
⇒a=0;b=0⇒a=0;b=0 từ đó ta tìm được c = 0

Bài 3:
Xét tam giác ABC vuông tại A.Gọi độ dài BC,AC,AB lần lượt là a,b,c(a,b,c thuộc N*)
Ta cần chứng minh△ABC⋮6△ABC⋮6
<=>bc⋮⋮12<=>Ta cần chứng minh bc⋮3⋮3⋮4⋮4
**Chứng minh bc⋮3⋮3:
Giả sử trong hai số b và c không có số nào ⋮3⋮3.=>b,c chỉ có dạng b3+1 hoặc b3-1(b3 là bội số của 3)
=>b2+c2b2+c2 có dạng b3-1(Bình phương lên sẽ thấy)
=>a2a2 có dạng b3-1. (1)
+a có dạng b3 =>a2a2 dạng b3
+a có dạng b3+1 hoặc b3-1=>a2a2 dạng b3+1
=>a2a2 có dạng b3 hoặc b3+1. Điều này trái với (1)=> vô lí.
Vậy => trong b và c có ít nhất một số chia hết cho 3=> bc chia hết cho 3
**Chứng minh bc chia hết cho 4 cũng tương tụ nhu trên vói 4 TH:b4;b4+1;b4-1;b4+2
Kết luận bc chia hết cho 12=>△ABC⋮6△ABC⋮6
Vậy bài toán được chứng minh

P/s: - Thứ nhất, bài này ko phải toán lớp 6 nhé, tầm lớp 8 hoặc 9.

- Thứ hai, t làm hên xui, ko bt đúng hay sai từ từ hẳn chép. Thầy phinit, xem lại bài 2 hộ em.

Toán_Học
6 tháng 6 2017 lúc 20:14

Các câu hỏi tương tự
Jennifer Cute
Xem chi tiết
TRẦN CÔNG THỊNH PHÚ
Xem chi tiết
Ngô Hoàng Thanh Hải
Xem chi tiết
TRẦN CÔNG THỊNH PHÚ
Xem chi tiết
wcdccedc
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lê Lê
Xem chi tiết
Nhân Mã
Xem chi tiết
Nguyễn Hoàng Trúc Anh
Xem chi tiết
👁💧👄💧👁
Xem chi tiết