Bài 1:
Rút gọn biểu thức:
2332
với −2≤x≤2.
Bài 2:
3√m là số vô tỷ. Tìm các số hữu tỷ a,b,c để:
23√m+c=0
2) Tìm số tự nhiên có 4 chữ số (viết trong hệ thập phân) sao cho 2 điều kiện sau đồng thời thỏa mãn:
(i) Mỗi chữ số đứng sau lớn hơn chữ số đứng liền trước.
(ii) Tổng p+q lấy giá trị nhỏ nhất, trong đó p là tỉ số của chữ số hàng chục và chữ số hàng đơn vị còn q là tỉ số chữ số hàng nghìn và chữ số hàng trăm.
Bài 3:
1) Tìm tất cả các số nguyên x thỏa mãn:
|x−10|+|x−11|+|x+101|+|x+990|+|x+1000|=2012
2) Chứng minh rằng có thể chia một tam giác vuông có độ dài 3 cạnh là các số nguyên thành 6 phần diện tích bằng nhau và diện tích mỗi phần là số nguyên.
Bài 1:
Đặt a=√2+x;b=√2−x(a,b≥0)a=2+x;b=2−x(a,b≥0)
⇒a2+b2=4;a2−b2=2x⇒a2+b2=4;a2−b2=2x
⇒A=√2+ab(a3−b3)4+ab=√2+ab(a−b)(a2+b2+ab)4+ab⇒A=2+ab(a3−b3)4+ab=2+ab(a−b)(a2+b2+ab)4+ab
⇒A=√2+ab(a−b)(4+ab)4+ab=√2+ab(a−b)⇒A=2+ab(a−b)(4+ab)4+ab=2+ab(a−b)
⇒A√2=√4+2ab(a−b)⇒A2=4+2ab(a−b)
⇒A√2=√(a2+b2+2ab)(a−b)=(a+b)(a−b)⇒A2=(a2+b2+2ab)(a−b)=(a+b)(a−b)
⇒A√2=a2−b2=2x⇒A=x√2⇒A2=a2−b2=2x⇒A=x2
Bài 2:
a3√m2+b3√m+c=0am23+bm3+c=0 (1)
Giả sử tồn tại (1) a3√m2+b3√m+c=0am23+bm3+c=0 (2)
Từ (1)(2) ⇒(b2−ac)3√m=(a2m−bc)⇒(b2−ac)m3=(a2m−bc)
Nếu a2m−bc≠0a2m−bc≠0 ⇒3√m=a2m−bcb2−ac⇒m3=a2m−bcb2−ac là số vô tỉ. Trái giả thiết!!
⇒{b2−ac=0a2m−bc=0⇒{b3=abcbc=am2⇒{b2−ac=0a2m−bc=0⇒{b3=abcbc=am2
⇒b3=a3m⇒b=a3√m⇒b3=a3m⇒b=am3. Nếu b khác 0 thì 3√m=bam3=ba là số vô tỉ. Trái Giả thiết
⇒a=0;b=0⇒a=0;b=0 từ đó ta tìm được c = 0
Bài 3:
Xét tam giác ABC vuông tại A.Gọi độ dài BC,AC,AB lần lượt là a,b,c(a,b,c thuộc N*)
Ta cần chứng minh△ABC⋮6△ABC⋮6
<=>bc⋮⋮12<=>Ta cần chứng minh bc⋮3⋮3 và ⋮4⋮4
**Chứng minh bc⋮3⋮3:
Giả sử trong hai số b và c không có số nào ⋮3⋮3.=>b,c chỉ có dạng b3+1 hoặc b3-1(b3 là bội số của 3)
=>b2+c2b2+c2 có dạng b3-1(Bình phương lên sẽ thấy)
=>a2a2 có dạng b3-1. (1)
+a có dạng b3 =>a2a2 dạng b3
+a có dạng b3+1 hoặc b3-1=>a2a2 dạng b3+1
=>a2a2 có dạng b3 hoặc b3+1. Điều này trái với (1)=> vô lí.
Vậy => trong b và c có ít nhất một số chia hết cho 3=> bc chia hết cho 3
**Chứng minh bc chia hết cho 4 cũng tương tụ nhu trên vói 4 TH:b4;b4+1;b4-1;b4+2
Kết luận bc chia hết cho 12=>△ABC⋮6△ABC⋮6
Vậy bài toán được chứng minh
P/s: - Thứ nhất, bài này ko phải toán lớp 6 nhé, tầm lớp 8 hoặc 9.
- Thứ hai, t làm hên xui, ko bt đúng hay sai từ từ hẳn chép. Thầy phinit, xem lại bài 2 hộ em.
tag nhầm địa chỉ của thầy phinit. @ngonhuminh, @ngonhuminh, @Ace Legona, @Nguyễn Huy Tú, @Tuấn Anh Phan Nguyễn, @Cẩm Vân Nguyễn Thị, @soyeon_Tiểubàng giải, @Hoàng Lê Bảo Ngọc, @Võ Đông Anh Tuấn, @Lê Nguyên Hạo, @Isolde Moria, @Violet, . . . .gv với ctv giải hộ em