\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}\)
\(\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-....-\frac{1}{50}+\frac{1}{50}\)
=> \(\frac{1}{2}-\frac{1}{50}=\frac{12}{25}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{50^2}\)
\(\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-....-\frac{1}{50}+\frac{1}{50}\)
=> \(\frac{1}{2}-\frac{1}{50}=\frac{12}{25}\)
A.\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
So sánh A với 1
B.\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
So sánh B với \(\frac{1}{2}\)
1) Chứng tỏ rằng:
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}<1\)
b)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}<1\)
BÀI KHÁ LÀ KHÓ GIẢI ĐẦY ĐỦ CHI TIẾT VÀ DỄ HIỂU CHO MÌNH NHA.THANKS
1) Tính tổng hợp lí sau:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
2) Cho
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)
Chứng minh A < 2
3) Tính giá trị của biểu thức:
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
4) Tính tổng
\(S=3+\frac{3}{2}+\frac{3}{2^2}+...+\frac{3}{2^9}\)
Làm ơn giúp mình với, thứ năm là thi rùi
HU HU HU
bài 1 chứng tỏ rằng
S=\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+........+\(\frac{1}{49.50}\)< 1
S=\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+..........+\(\frac{1}{50^2}\)< 1
giúp mình với xin các bạn đó
mình tích cho
Bài 15.
a) So sánh \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)và 1
b) Cho biểu thức A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{1000}}.\)Chứng tỏ A < 1
Bài 1: Tìm x, biết:
\(\frac{1}{2.3}x+\frac{1}{3.4}x+\frac{1}{4.5}x+.....+\frac{1}{49.50}x=1\)
Bài 2: Chứng minh rằng:
\(a)A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{100^2}< 2\)
\(b)B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{63}< 6\)
\(c)C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.......\frac{9999}{10000}< \frac{1}{100}\)
Bài 3: Tính tổng:
\(S=\frac{1+2+2^2+2^3+.....+2^{2008}}{1-2^{2009}}\)
B1 : tính
A= 1 + 2 +3 +4+5+...+99+100
B =\(\frac{1}{2}\)+ \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)
B2 : Tính
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)
B3 :So sánh
\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)với 1
B4: Tính
\(B=\frac{1+2+2^2+2^3+...+2^{2015}}{1-2^{2016}}\)
Mấy bạn làm được bài nào thì chỉ cho mình zới
Chứng tỏ rằng
\(a,\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}< 1\)
\(b,\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
So sánh :
\(A=\frac{1}{1.2^2}+\frac{1}{2.3^2}+\frac{1}{3.4^2}+...+\frac{1}{98.99^2}+\frac{1}{99.100^2}\) và \(B=\frac{5}{12}\)