Cho \(\Delta ABC\) vuông tại \(A\), \(AH\) là đường cao.
a) Cm: \(\Delta ABH\) đồng dạng với \(\Delta CBA\)
b) Cm: \(AH^2=BH.HC\)
c) Vẽ tia phân giác của góc \(ABC\). Cắt \(AH\) tại \(I\), cắt \(AC\) tại \(E\)
Cm: \(AI.AE=IH.EC\)
Bài tập: Cho \(\Delta ABC\) có AB =20 cm, AC = 25 cm, BC = 30 cm. Đường phân giác trong của \(\widehat{A}\) cắt cạnh BC tại D. Qua B kẻ BH vuông góc với AD (\(H\in AD\)), qua C kẻ CK vuông góc với AD (\(K\in AD\)).
a) Chứng minh \(\Delta ABH\) đồng dạng với \(\Delta ACK\)
b) Chứng minh AH.KD = AK.HD
c) Tính BD và DC
d) Đường phân giác của \(\widehat{B}\) cắt AC tại E và đường phân giác của \(\widehat{C}\) cắt AB tại F. Chứng minh \(\dfrac{DB}{DC}\times\dfrac{EC}{EA}\times\dfrac{FA}{FB}=1\)
Giúp nk với ạ, please
Cho tam giác ABC có AB<AC.Hai đường cao BD và CE cắt nhau tại H.
a) So sánh \(\widehat{BAH}\)và \(\widehat{CAH}\)
b) So sánh BD và CE
c) Chứng minh \(\Delta ADE\simeq\Delta ABC\)
Bài 3: Cho \(\Delta ABC\) vuông tại A, đường cao AH
a. Chứng minh \(\Delta AHB\) đồng dạng với \(\Delta CBA\)
b. Kẻ đường phân giác AD của \(\Delta CAH\) và đường phân giác BK của \(\Delta ABC\) \(\left(D\in BC,K\in AC\right)\), BK cắt AH và AD lần lượt tại E và F. Chứng minh \(\Delta AEF\) đồng dạng với \(\Delta BEH\)
c Chứng minh: KD // AH. Chứng minh \(\dfrac{EH}{AB}=\dfrac{KD}{BC}\)
Cho \(\Delta\)ABC vuông tại A, biết AB = 6 cm ; BC = 10 cm, đường cao AH.
a/ CM: \(\Delta\)ABC đồng dạng \(\Delta\) HBA
b/ Tỉnh tỉ số diện tích \(\Delta\)HBA và ABC
c/ Đường phân giác góc ABC cắt cạnh AC tại D. Tính DC.
d/ Gọi I là giao điểm của AH và BD, K là hình chiếu của điểm C trên đường thẳng BD. CM: góc BIA = góc BAK
cho tam giác ABC vuông tại A có AB= 6 cm, AC=8 cm, đường cao AH.
a) cm :\(\Delta\) ABC đồng dạng với \(\Delta\) HBA
b)cm AH2=BH\(\times\)HC
c)tính BC,AH,BH,CH
d)cho AH là tpg của tg ABC.S\(\Delta\)ABD
giúp cho tôi với
BÀI 1 : Cho \(\Delta ABC\) và đường cao AH. Kẻ \(HM⊥AB;HN⊥AC\).
a) CM: \(\Delta AMH\) đồng dạng với \(\Delta AHB\)
b) CM : \(AM\times AB=AN\times AC\)
c) tính MN biết AH=6cm; AM=4cm; AN=3cm; BC=15cm
BÀI 2: Cho \(\Delta ABC\) vuông tại A (AB<AC). Đường cao AH.
a) CM : \(BA^2=BH\times BC\)
b) tính AC biết AB=30cm; AH= 24cm
c) Trên AC lấy M sao cho CM=10cm. Trên BC lấy N sao cho CN=8cm. CM: \(\Delta CMN⊥\)
d) CM : \(CM\times CA=CN\times CB\)
Cho tam giác ABC vuông tại A ( AC > AB ) , đường cao AH . a) CM tam giác ABH đồng dạng với tam giác CAB . b) CM AH2 = BH . CH c) Điểm I là trung điểm của AC . Kẻ HK vuông góc với AB ( K thuộc AB ) . D là giao điểm của BI và HK . Chứng minh KD = DH .
Cho tam giác ABC vuông tại A có AB=9 cm,AC = 12 cm tia phân giác góc A cắt BC tại D, từ D kẻ DE vuông góc AC (E thuộc AC)
a,Tính độ dài BD và CD
b, kẻ đường cao AH. Hãy chứng minh tam giác ABH đồng dạng tam giác CDE