a: \(BC=\sqrt{8^2+15^2}=17\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{120}{17}\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{64}{17}\left(cm\right)\)
CH=BC-BH=225/17(cm)
b: Xét tứ giác AMHN có \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
nên AMHN là hình chữ nhật
Suy ra: AH=MN=120/17(cm)
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)