Cho gó nhọn xOy , điểm A nằm trên tia phân giác góc xOy . Một đường thẳng thay đổi đi qua A cắt Ox , Oy tại E và F
CMR: \(\dfrac{1}{OE}+\dfrac{1}{FO}\) không đổi
a, Cho tam giác ABC nhọn, H là trực tâm, I là trọng tâm, O là giao điểm của ba đường trung trực, M là trung điểm BC. Tính √\(\dfrac{IO^2+OM^2}{IH^2+HA^2}\)
b, Cho 1 góc xOy, 1 đường thẳng d không đổi cắt Õ, Oy tại M và N. Biết giá trị \(\dfrac{1}{OM}+\dfrac{1}{ON}\) không thay đổi. Chứng minh: đường thẳng d luôn đi qua một điểm cố định
Cho (O) đk BC=2R. Trên tia đối BC lấy A/ AB<R.Từ A kẻ cát tuyến ADE với (O). Đường vuông góc AB tại A cắt CD tại M. MB cắt (O) , AD tại H và K.
a) C/m ABDM nội tiếp
b) C/m EH vuông góc AC
c) Cm khi cát tuyến ADE thay đổi thì trọng tâm tam giác ACE luôn nằm trên đg tròn cố định
Cho tam giác ABC nhọn nội tiếp (O), 2 đg cao BE,CF cắt nhau tại H. Kẻ đk AD của (O).Qua H kẻ đg d vuông góc AO tại K, d cắt AB,AC,BC tại M,N,S.
a)C/m A,E,F,K,H cùng e 1 đg tròn
b)C/m BCMN nội tiếp và SM.SN= SB.SC.
c) AH cắt (O) tại Q. C/m SQ^2 = SM.SN
d)C/m SI vuông góc OI.
cho đoạn thẳng không đổi BC. trên BC lấy điểm H qua điểm H kẻ tia Hx vuông góc với BC. trên tia Hx lấy điểm A sao cho \(B\widehat{A}C=90^0\). từ H kẻ HD vuông góc AB (D thuộc AB),kẻ HE vuông góc AC (E thuộc AC)
a.chứng minh AD.BD.\(AC^2=AH^2\)
b.qua D,E lần lượt kẻ đường thẳng vuông góc DE cắt BC lần lượt ở M và N. xác định vị trí của H để diện tích tứ giác DENM có diện tích lớn nhau
cho đoạn thẳng không đổi BC. trên BC lấy điểm H qua điểm H kẻ tia Hx vuông góc với BC. trên tia Hx lấy điểm A sao cho \(B\widehat{A}C=90^0\). từ H kẻ HD vuông góc AB (D thuộc AB),kẻ HE vuông góc AC (E thuộc AC)
a.chứng minh AD.BD.\(AC^2=AH^2\)
b.qua D,E lần lượt kẻ đường thẳng vuông góc DE cắt BC lần lượt ở M và N. xác định vị trí của H để diện tích tứ giác DENM có diện tích lớn nhau
tam giác ABC nhọn nội tiếp đường tròn (O;R), N bất kì thuộc BC(N≠B,C). AN cắt (O) tại M; E,H là hình chiếu của M trên AB,AC. MD vuông góc BC(Dϵ BC)
1 CMR : H,D,E thẳng hàng
2 tìm vị trí của N trên BC để EH Max
cho đoạn thẳng không đổi BC. trên BC lấy điểm H qua điểm H kẻ tia Hx vuông góc với BC. trên tia Hx lấy điểm A sao cho \(B\widehat{A}C=90^0\). từ H kẻ HD vuông góc AB (D thuộc AB),kẻ HE vuông góc AC (E thuộc AC)
a.chứng minh AD.BD.\(AC^2=AH^4\)
b.qua D,E lần lượt kẻ đường thẳng vuông góc DE cắt BC lần lượt ở M và N. xác định vị trí của H để diện tích tứ giác DENM có diện tích lớn nhau
cho đoạn thẳng không đổi BC. trên BC lấy điểm H qua điểm H kẻ tia Hx vuông góc với BC. trên tia Hx lấy điểm A sao cho \(B\widehat{A}C=90^0\). từ H kẻ HD vuông góc AB (D thuộc AB),kẻ HE vuông góc AC (E thuộc AC)
a.chứng minh AD.BD.AC\(^2=AH^2\)
b.qua D,E lần lượt kẻ đường thẳng vuông góc DE cắt BC lần lượt ở M và N. xác định vị trí của H để diện tích tứ giác DENM có diện tích lớn nhau