Giá của các vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {AE} \) cùng nằm trên mặt phẳng (ACDE). (1)
Vì DCAE là hình bình hành nên \(\overrightarrow {AC} + \overrightarrow {AE} = \overrightarrow {AD} \) (quy tắc hình bình hành)
Vì các lực kéo làm cho ba sợi dây ở trạng thái đứng yên nên \(\overrightarrow {AD} = - \overrightarrow {AB} \), do đó hai vectơ \(\overrightarrow {AD} \) và \(\overrightarrow {AB} \) có giá cùng nằm trên một mặt phẳng (ACDE). (2)
Từ (1) và (2) suy ra ba vectơ \(\overrightarrow {AC} \), \(\overrightarrow {AE} \) và \(\overrightarrow {AB} \) có giá cùng nằm trên mặt phẳng (ACDE).
Vậy khi các lực kéo làm cho ba sợi dây ở trạng thái đứng yên thì khi đó ba sợi dây nằm trên cùng một mặt phẳng
