\(B=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times\left(1-\frac{1}{5}\right)\times...\times\left(1-\frac{1}{2004}\right)\)
\(=\left(\frac{2}{2}-\frac{1}{2}\right)\times\left(\frac{3}{3}-\frac{1}{3}\right)\times...\times\left(\frac{2003}{2003}-\frac{1}{2003}\right)\times\left(\frac{2004}{2004}-\frac{1}{2004}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times...\times\frac{2002}{2003}\times\frac{2003}{2004}\)
\(=\frac{1\times2\times...\times2002\times2003}{2\times3\times...\times2003\times2004}\)
\(=\frac{1}{2004}\)
=> B = 1/2 * 2/3 * 3/4 * 4/5 *...* 2002/2003 * 2003/2004 = 1/2004
\(B=\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x\left(1-\frac{1}{5}\right)x...x\left(1-\frac{1}{2-2003}\right)x\left(1-\frac{1}{2004}\right)\)
\(B=\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x\frac{4}{5}x...x\frac{2002}{2003}x\frac{2003}{2004}\)
\(B=\frac{1}{2004}\)