a) Để B là phân số thì 2n + 1 \(\ne\) 0
\(\Leftrightarrow2n\ne0-1\)
\(\Leftrightarrow2n\ne-1\)
\(\Leftrightarrow n\ne\frac{-1}{2}\)
Vậy với mọi n \(\in\) Z thì B là phân số.
b) Để B \(\in\) Z thì \(\left(3n+2\right)⋮\left(2n+1\right)\)
\(\Leftrightarrow\left[2\left(3n+2\right)\right]⋮\left(2n+1\right)\)
\(\Leftrightarrow\left[6n+4\right]⋮\left(2n+1\right)\)
\(\Leftrightarrow\left[6n+3+1\right]⋮\left(2n+1\right)\)
\(\Leftrightarrow\left[3\left(2n+1\right)+1\right]⋮\left(2n+1\right)\)
Vì \(\left[3\left(2n+1\right)\right]⋮\left(2n+1\right)\) nên \(1⋮\left(2n+1\right)\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{-1;1\right\}\)
Lập bảng:
| \(2n+1\) | \(-1\) | \(1\) |
| \(n\) | \(-1\) | \(0\) |
Vậy \(n\in\left\{-1;0\right\}\) thì B là số nguyên.